skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burger, Noam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We study a simple class offlavored scalarmodels, in which the couplings of a new light scalar to standard-model fermions are controlled by the flavor symmetry responsible for fermion masses and mixings. The scalar couplings are then aligned with the Yukawa matrices, with small but nonzero flavor-violating entries.D-meson decays are an important source of scalar production in these models, in contrast to models assuming minimal flavor violation, in whichBandKdecays dominate. We show that FASER2 can probe large portions of the parameter space of the models, with comparable numbers of scalars fromBandDdecays in some regions. If discovered, these particles will not only provide evidence of new physics, but they may also shed new light on the standard model flavor puzzle. Finally, the richness of theoretical models underscores the importance of model-independent interpretations. We therefore analyze the sensitivity of FASER and other experimental searches in terms of physical parameters: (i) the branching fractions of heavy mesons to the scalar, and (ii)τ/m, whereτandmare the scalar’s lifetime and mass, respectively. The results are largely independent of the new particle’s spin and can be used to extract constraints on a wide variety of models. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.3 days, can be explained with an intermediate-mass black hole secondary on a mildly eccentric orbit at a mean distance of about 100 gravitational radii from the primary. Our work suggests that QPOuts could be a new way to identify intermediate/extreme-mass ratio binary candidates. 
    more » « less