Twenty-four-nucleotide (nt) small interfering RNAs (siRNAs) maintain asymmetric DNA methylation at thousands of euchromatic transposable elements in plant genomes in a process called RNA-directed DNA methylation (RdDM). RdDM is dispensable for growth and development in Arabidopsis thaliana, but is required for reproduction in other plants, such as Brassica rapa. The 24-nt siRNAs are abundant in maternal reproductive tissue, due largely to overwhelming expression from a few loci in the ovule and developing seed coat, termed siren loci. A recent study showed that 24-nt siRNAs produced in the anther tapetal tissue can methylate male meiocyte genes in trans. Here we show that in B. rapa, a similar process takes place in female tissue. siRNAs are produced from gene fragments embedded in some siren loci, and these siRNAs can trigger methylation in trans at related protein-coding genes. This trans-methylation is associated with silencing of some target genes and may be responsible for seed abortion in RdDM mutants. Furthermore, we demonstrate that a consensus sequence in at least two families of DNA transposons is associated with abundant siren expression, most likely through recruitment of CLASSY3, a putative chromatin remodeler. This research describes a mechanism whereby RdDM influences gene expression and sheds lightmore »
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
30
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Burgess, Diane (3)
-
Freeling, Michael (3)
-
Grover, Jeffrey W. (3)
-
Mosher, Rebecca A. (3)
-
Baten, Abdul (2)
-
Kendall, Timmy (2)
-
King, Graham J. (2)
-
Chow, Hiu Tung (1)
-
Meyers, Blake C. (1)
-
Pokhrel, Suresh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Beygelzimer (0)
-
A. E. Lischka, E.B. Dyer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. Higgins (0)
-
A. I. Sacristán, J. C. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Grover, Jeffrey W. ; Burgess, Diane ; Kendall, Timmy ; Baten, Abdul ; Pokhrel, Suresh ; King, Graham J. ; Meyers, Blake C. ; Freeling, Michael ; Mosher, Rebecca A. ( , Proceedings of the National Academy of Sciences)
Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). In
Brassica rapa , RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression duringB. rapa seed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues. -
Grover, Jeffrey W. ; Kendall, Timmy ; Baten, Abdul ; Burgess, Diane ; Freeling, Michael ; King, Graham J. ; Mosher, Rebecca A. ( , The Plant Journal)