skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burgio, Giulio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Epidemic models study the spread of undesired agents through populations, be it infectious diseases through a country, misinformation in social media or pests infesting a region. In combating these epidemics, we rely neither on global top-down interventions, nor solely on individual adaptations. Instead, interventions commonly come from local institutions such as public health departments, moderation teams on social media platforms or other forms of group governance. Classic models, which are often individual or agent-based, are ill-suited to capture local adaptations. We leverage developments of institutional dynamics based on cultural group selection to study how groups attempt local control of an epidemic by taking inspiration from the successes and failures of other groups. Incorporating institutional changes into epidemic dynamics reveals paradoxes: a higher transmission rate can result in smaller outbreaks as does decreasing the speed of institutional adaptation. When groups perceive a contagion as more worrisome, they can invest in improved policies and, if they maintain these policies long enough to have impact, lead to a reduction in endemicity. By looking at the interplay between the speed of institutions and the transmission rate of the contagions, we find rich coevolutionary dynamics that reflect the complexity of known biological and social contagions. 
    more » « less