skip to main content


Search for: All records

Creators/Authors contains: "Burkepile, Deron E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Marine heatwaves are increasing in frequency and duration, threatening tropical reef ecosystems through intensified coral bleaching events. We examined a strikingly variable spatial pattern of bleaching in Moorea, French Polynesia following a heatwave that lasted from November 2018 to July 2019. In July 2019, four months after the onset of bleaching, we surveyed > 5000 individual colonies of the two dominant coral genera,PocilloporaandAcropora, at 10 m and 17 m water depths, at six forereef sites around the island where temperature was measured. We found severe bleaching increased with colony size for both coral genera, butAcroporableached more severely thanPocilloporaoverall. Acroporableached more at 10 m than 17 m, likely due to higher light availability at 10 m compared to 17 m, or greater daily temperature fluctuation at depth. Bleaching inPocilloporacorals did not differ with depth but instead varied with the interaction of colony size and Accumulated Heat Stress (AHS), in that larger colonies (> 30 cm) were more sensitive to AHS than mid-size (10–29 cm) or small colonies (5–9 cm). Our findings provide insight into complex interactions among coral taxa, colony size, and water depth that produce high spatial variation in bleaching and related coral mortality.

     
    more » « less
  2. Abstract Coral disease is becoming increasingly problematic on reefs worldwide. However, most coral disease research has focused on the abiotic drivers of disease, potentially overlooking the role of species interactions in disease dynamics. Coral predators in particular can influence disease by breaking through protective tissues and exposing corals to infections, vectoring diseases among corals, or serving as reservoirs for pathogens. Numerous studies have demonstrated the relationship between corallivores and disease in certain contexts, but to date there has been no comprehensive synthesis of the relationships between corallivores and disease, which hinders our understanding of coral disease dynamics. To address this void, we identified 65 studies from 26 different ecoregions that examine this predator–prey-disease relationship. Observational studies found over 20 positive correlations between disease prevalence and corallivore abundance, with just four instances documenting a negative correlation between corallivores and disease. Studies found putative pathogens in corallivore guts and experiments demonstrated the ability of corallivores to vector pathogens. Corallivores were also frequently found infesting disease margins or targeting diseased tissues, but the ecological ramifications of this behavior remains unknown. We found that the impact of corallivores was taxon-dependent, with most invertebrates increasing disease incidence, prevalence, or progression; fish showing highly context-dependent effects; and xanthid crabs decreasing disease progression. Simulated wounding caused disease in many cases, but experimental wound debridement slowed disease progression in others, which could explain contrasting findings from different taxa. The negative effects of corallivores are likely to worsen as storms intensify, macroalgal cover increases, more nutrients are added to marine systems, and water temperatures increase. As diseases continue to impact coral reefs globally, a more complete understanding of the ecological dynamics of disease—including those involving coral predators—is of paramount importance to coral reef conservation and management. 
    more » « less
  3. abstract Coastal ecosystems play a disproportionately large role in society, and climate change is altering their ecological structure and function, as well as their highly valued goods and services. In the present article, we review the results from decade-scale research on coastal ecosystems shaped by foundation species (e.g., coral reefs, kelp forests, coastal marshes, seagrass meadows, mangrove forests, barrier islands) to show how climate change is altering their ecological attributes and services. We demonstrate the value of site-based, long-term studies for quantifying the resilience of coastal systems to climate forcing, identifying thresholds that cause shifts in ecological state, and investigating the capacity of coastal ecosystems to adapt to climate change and the biological mechanisms that underlie it. We draw extensively from research conducted at coastal ecosystems studied by the US Long Term Ecological Research Network, where long-term, spatially extensive observational data are coupled with shorter-term mechanistic studies to understand the ecological consequences of climate change. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Dysbiosis of coral microbiomes results from various biotic and environmental stressors, including interactions with important reef fishes which may act as vectors of opportunistic microbes via deposition of fecal material. Additionally, elevated sea surface temperatures have direct effects on coral microbiomes by promoting growth and virulence of opportunists and putative pathogens, thereby altering host immunity and health. However, interactions between these biotic and abiotic factors have yet to be evaluated. Here, we used a factorial experiment to investigate the combined effects of fecal pellet deposition by the widely distributed surgeonfish Ctenochaetus striatus and elevated sea surface temperatures on microbiomes associated with the reef-building coral Porites lobata . Our results showed that regardless of temperature, exposure of P. lobata to C. striatus feces increased alpha diversity, dispersion, and lead to a shift in microbial community composition – all indicative of microbial dysbiosis. Although elevated temperature did not result in significant changes in alpha and beta diversity, we noted an increasing number of differentially abundant taxa in corals exposed to both feces and thermal stress within the first 48h of the experiment. These included opportunistic microbial lineages and taxa closely related to potential coral pathogens (i.e., Vibrio vulnificus , Photobacterium rosenbergii ). Some of these taxa were absent in controls but present in surgeonfish feces under both temperature regimes, suggesting mechanisms of microbial transmission and/or enrichment from fish feces to corals. Importantly, the impact to coral microbiomes by fish feces under higher temperatures appeared to inhibit wound healing in corals, as percentages of tissue recovery at the site of feces deposition were lower at 30°C compared to 26°C. Lower percentages of tissue recovery were associated with greater relative abundance of several bacterial lineages, with some of them found in surgeonfish feces (i.e., Rhodobacteraceae, Bdellovibrionaceae, Crocinitomicaceae). Our findings suggest that fish feces interact with elevated sea surface temperatures to favor microbial opportunism and enhance dysbiosis susceptibility in P. lobata . As the frequency and duration of thermal stress related events increase, the ability of coral microbiomes to recover from biotic stressors such as deposition of fish feces may be greatly affected, ultimately compromising coral health and resilience. 
    more » « less