skip to main content


Search for: All records

Creators/Authors contains: "Burley, Stephen K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    BindingDB (bindingdb.org) is a public, web-accessible database of experimentally measured binding affinities between small molecules and proteins, which supports diverse applications including medicinal chemistry, biochemical pathway annotation, training of artificial intelligence models and computational chemistry methods development. This update reports significant growth and enhancements since our last review in 2016. Of note, the database now contains 2.9 million binding measurements spanning 1.3 million compounds and thousands of protein targets. This growth is largely attributable to our unique focus on curating data from US patents, which has yielded a substantial influx of novel binding data. Recent improvements include a remake of the website following responsive web design principles, enhanced search and filtering capabilities, new data download options and webservices and establishment of a long-term data archive replicated across dispersed sites. We also discuss BindingDB’s positioning relative to related resources, its open data sharing policies, insights gleaned from the dataset and plans for future growth and development.

     
    more » « less
  2. With the ever‐expanding toolkit of molecular viewers, the ability to visualize macromolecular structures has never been more accessible. Yet, the idiosyncratic technical intricacies across tools and the integration complexities associated with handling structure annotation data present significant barriers to seamless interoperability and steep learning curves for many users. The necessity for reproducible data visualizations is at the forefront of the current challenges. Recently, we introduced MolViewSpec (homepage:https://molstar.org/mol‐view‐spec/, GitHub project:https://github.com/molstar/mol‐view‐spec), a specification approach that defines molecular visualizations, decoupling them from the varying implementation details of different molecular viewers. Through the protocols presented herein, we demonstrate how to use MolViewSpec and its 3D view–building Python library for creating sophisticated, customized 3D views covering all standard molecular visualizations. MolViewSpec supports representations like cartoon and ball‐and‐stick with coloring, labeling, and applying complex transformations such as superposition to any macromolecular structure file in mmCIF, BinaryCIF, and PDB formats. These examples showcase progress towards reusability and interoperability of molecular 3D visualization in an era when handling molecular structures at scale is a timely and pressing matter in structural bioinformatics as well as research and education across the life sciences. 
    more » « less
    Free, publicly-accessible full text available July 18, 2025
  3. Free, publicly-accessible full text available May 1, 2025
  4. Recent advances in Artificial Intelligence and Machine Learning (e.g., AlphaFold, RosettaFold, and ESMFold) enable prediction of three-dimensional (3D) protein structures from amino acid sequences alone at accuracies comparable to lower-resolution experimental methods. These tools have been employed to predict structures across entire proteomes and the results of large-scale metagenomic sequence studies, yielding an exponential increase in available biomolecular 3D structural information. Given the enormous volume of this newly computed biostructure data, there is an urgent need for robust tools to manage, search, cluster, and visualize large collections of structures. Equally important is the capability to efficiently summarize and visualize metadata, biological/biochemical annotations, and structural features, particularly when working with vast numbers of protein structures of both experimental origin from the Protein Data Bank (PDB) and computationally-predicted models. Moreover, researchers require advanced visualization techniques that support interactive exploration of multiple sequences and structural alignments. This paper introduces a suite of tools provided on the RCSB PDB research-focused web portal RCSB. org, tailor-made for efficient management, search, organization, and visualization of this burgeoning corpus of 3D macromolecular structure data.

     
    more » « less
  5. The Protein Data Bank (PDB) is the single global archive of atomic-level, three-dimensional structures of biological macromolecules experimentally determined by macromolecular crystallography, nuclear magnetic resonance spectroscopy or three-dimensional cryo-electron microscopy. The PDB is growing continuously, with a recent rapid increase in new structure depositions from Asia. In 2022, the Worldwide Protein Data Bank (wwPDB; https://www.wwpdb.org/) partners welcomed Protein Data Bank China (PDBc; https://www.pdbc.org.cn) to the organization as an Associate Member. PDBc is based in the National Facility for Protein Science in Shanghai which is associated with the Shanghai Advanced Research Institute of Chinese Academy of Sciences, the Shanghai Institute for Advanced Immunochemical Studies and the iHuman Institute of ShanghaiTech University. This letter describes the history of the wwPDB, recently established mechanisms for adding new wwPDB data centers and the processes developed to bring PDBc into the partnership.

     
    more » « less
  6. Abstract

    The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, RCSB.org), the US Worldwide Protein Data Bank (wwPDB, wwPDB.org) data center for the global PDB archive, provides access to the PDB data via its RCSB.org research-focused web portal. We report substantial additions to the tools and visualization features available at RCSB.org, which now delivers more than 227000 experimentally determined atomic-level three-dimensional (3D) biostructures stored in the global PDB archive alongside more than 1 million Computed Structure Models (CSMs) of proteins (including models for human, model organisms, select human pathogens, crop plants and organisms important for addressing climate change). In addition to providing support for 3D structure motif searches with user-provided coordinates, new features highlighted herein include query results organized by redundancy-reduced Groups and summary pages that facilitate exploration of groups of similar proteins. Newly released programmatic tools are also described, as are enhanced training opportunities.

     
    more » « less
  7. Free, publicly-accessible full text available March 1, 2025
  8. The symmetry of biological molecules has fascinated structural biologists ever since the structure of hemoglobin was determined. The Protein Data Bank (PDB) archive is the central global archive of three-dimensional (3D), atomic-level structures of biomolecules, providing open access to the results of structural biology research with no limitations on usage. Roughly 40% of the structures in the archive exhibit some type of symmetry, including formal global symmetry, local symmetry, or pseudosymmetry. The Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (founding member of the Worldwide Protein Data Bank partnership that jointly manages, curates, and disseminates the archive) provides a variety of tools to assist users interested in exploring the symmetry of biological macromolecules. These tools include multiple modalities for searching and browsing the archive, turnkey methods for biomolecular visualization, documentation, and outreach materials for exploring functional biomolecular symmetry. 
    more » « less