Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Structures of many large biomolecular assemblies are now being determined using integrative approaches. In these approaches, information derived from multiple experimental and computational methods is combined to compute three-dimensional structures of multi-protein complexes and other macromolecular machines. A standalone prototype data resource for integrative structures called PDB-Dev was built, based on recommendations of the Integrative and Hybrid Methods (IHM) Task Force of the Worldwide Protein Data Bank (wwPDB). This effort included developing data standards and software tools for collecting, curating, validating, visualizing, archiving, and disseminating integrative structures that span diverse spatiotemporal scales and conformational states. Mechanisms have been created to validate integrative structures based on the experimental data underpinning them. Building upon this foundational framework, PDB-Dev has been further expanded to handle large dynamic macromolecular systems and integrative structures that combine, for example, experimental restraints with atomic coordinates computed by machine learning algorithms. Data standards and supporting tools have also been extended to capture information about biomolecular dynamics, such as conformational transitions and related kinetic data derived from biophysical methods. Recently, PDB-Dev was unified with the PDB archive and rebranded as PDB-IHM (pdb-ihm.org), further promoting FAIR (Findable, Accessible, Interoperable, and Reusable) principles of data stewardship for integrative structural biology.more » « less
-
Abstract The Protein Data Bank (PDB) archives 3D structures of macromolecules determined experimentally using various methods. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) consortium. Research Collaboratory for Structural Bioinformatics (RCSB) PDB, the US data center for the PDB, provides streamlined access to >240 000 structures through a variety of research-focused tools on RCSB.org. In addition, RCSB.org makes available over 1 million computed structure models (CSMs) predicted using deep learning methods and archived in the AlphaFold Database and ModelArchive. The PDB-IHM system was developed as a wwPDB project based on community recommendations to archive structures determined using integrative/hybrid methods (IHM). These structures are computed by combining information from multiple experimental and computational techniques to overcome the limitations of traditional single methods (e.g. macromolecular crystallography, 3D electron microscopy, nuclear magnetic resonance spectroscopy). In 2024, PDB-IHM was unified with the PDB to archive integrative structures alongside single-method experimental structures. These integrative structures have been made accessible via the RCSB.org website, facilitating efficient delivery of IHM data to a broad community of PDB users. Herein, we describe the expanded capabilities of RCSB.org that support discovery, analysis, and visualization of integrative structures together with single-method experimental structures and CSMs.more » « less
-
Abstract Open access to three-dimensional atomic-level biostructure information from the Protein Data Bank (PDB) facilitated discovery/development of 100% of the 34 new low molecular weight, protein-targeted, antineoplastic agents approved by the US FDA 2019–2023. Analyses of PDB holdings, the scientific literature, and related documents for each drug-target combination revealed that the impact of structural biologists and public-domain 3D biostructure data was broad and substantial, ranging from understanding target biology (100% of all drug targets), to identifying a given target as likely druggable (100% of all targets), to structure-guided drug discovery (>80% of all new small-molecule drugs, made up of 50% confirmed and >30% probable cases). In addition to aggregate impact assessments, illustrative case studies are presented for six first-in-class small-molecule anti-cancer drugs, including a selective inhibitor of nuclear export targeting Exportin 1 (selinexor, Xpovio), an ATP-competitive CSF-1R receptor tyrosine kinase inhibitor (pexidartinib,Turalia), a non-ATP-competitive inhibitor of the BCR-Abl fusion protein targeting the myristoyl binding pocket within the kinase catalytic domain of Abl (asciminib, Scemblix), a covalently-acting G12C KRAS inhibitor (sotorasib, Lumakras or Lumykras), an EZH2 methyltransferase inhibitor (tazemostat, Tazverik), and an agent targeting the basic-Helix-Loop-Helix transcription factor HIF-2α (belzutifan, Welireg).more » « less
-
Elofsson, Arne (Ed.)Motivation: Tools for pairwise alignments between 3D structures of proteins are of fundamental importance for structural biology and bioinformatics, enabling visual exploration of evolutionary and functional relationships. However, the absence of a user-friendly, browser-based tool for creating alignments and visualizing them at both 1D sequence and 3D structural levels makes this process unnecessarily cumbersome. Results: We introduce a novel pairwise structure alignment tool (rcsb.org/alignment) that seamlessly integrates into the RCSB Protein Data Bank (RCSB PDB) research-focused RCSB.org web portal. Our tool and its underlying application programming interface (alignment.rcsb.org) empowers users to align several protein chains with a reference structure by providing access to established alignment algorithms (FATCAT, CE, TM-align, or Smith–Waterman 3D). The user-friendly interface simplifies parameter setup and input selection. Within seconds, our tool enables visualization of results in both sequence (1D) and structural (3D) perspectives through the RCSB PDB RCSB.org Sequence Annotations viewer and Mol* 3D viewer, respectively. Users can effortlessly compare structures deposited in the PDB archive alongside more than a million incorporated Computed Structure Models coming from the ModelArchive and AlphaFold DB. Moreover, this tool can be used to align custom structure data by providing a link/URL or uploading atomic coordinate files directly. Importantly, alignment results can be bookmarked and shared with collaborators. By bridging the gap between 1D sequence and 3D structures of proteins, our tool facilitates deeper understanding of complex evolutionary relationships among proteins through comprehensive sequence and structural analyses. Availability and implementation: The alignment tool is part of the RCSB PDB research-focused RCSB.org web portal and available at rcsb.org/alignment. Programmatic access is available via alignment.rcsb.org. Frontend code has been published at github.com/rcsb/rcsb-pecos-app. Visualization is powered by the open-source Mol* viewer (github.com/molstar/molstar and github.com/molstar/rcsb-molstar) plus the Sequence Annotations in 3D Viewer (github.com/rcsb/rcsb-saguaro-3d).more » « less
-
With the ever‐expanding toolkit of molecular viewers, the ability to visualize macromolecular structures has never been more accessible. Yet, the idiosyncratic technical intricacies across tools and the integration complexities associated with handling structure annotation data present significant barriers to seamless interoperability and steep learning curves for many users. The necessity for reproducible data visualizations is at the forefront of the current challenges. Recently, we introduced MolViewSpec (homepage:https://molstar.org/mol‐view‐spec/, GitHub project:https://github.com/molstar/mol‐view‐spec), a specification approach that defines molecular visualizations, decoupling them from the varying implementation details of different molecular viewers. Through the protocols presented herein, we demonstrate how to use MolViewSpec and its 3D view–building Python library for creating sophisticated, customized 3D views covering all standard molecular visualizations. MolViewSpec supports representations like cartoon and ball‐and‐stick with coloring, labeling, and applying complex transformations such as superposition to any macromolecular structure file in mmCIF, BinaryCIF, and PDB formats. These examples showcase progress towards reusability and interoperability of molecular 3D visualization in an era when handling molecular structures at scale is a timely and pressing matter in structural bioinformatics as well as research and education across the life sciences.more » « less
-
Gromiha, Michael (Ed.)Abstract MotivationVolumetric 3D object analyses are being applied in research fields such as structural bioinformatics, biophysics, and structural biology, with potential integration of artificial intelligence/machine learning (AI/ML) techniques. One such method, 3D Zernike moments, has proven valuable in analyzing protein structures (e.g., protein fold classification, protein–protein interaction analysis, and molecular dynamics simulations). Their compactness and efficiency make them amenable to large-scale analyses. Established methods for deriving 3D Zernike moments, however, can be inefficient, particularly when higher order terms are required, hindering broader applications. As the volume of experimental and computationally-predicted protein structure information continues to increase, structural biology has become a “big data” science requiring more efficient analysis tools. ResultsThis application note presents a Python-based software package, ZMPY3D, to accelerate computation of 3D Zernike moments by vectorizing the mathematical formulae and using graphical processing units (GPUs). The package offers popular GPU-supported libraries such as CuPy and TensorFlow together with NumPy implementations, aiming to improve computational efficiency, adaptability, and flexibility in future algorithm development. The ZMPY3D package can be installed via PyPI, and the source code is available from GitHub. Volumetric-based protein 3D structural similarity scores and transform matrix of superposition functionalities have both been implemented, creating a powerful computational tool that will allow the research community to amalgamate 3D Zernike moments with existing AI/ML tools, to advance research and education in protein structure bioinformatics. Availability and implementationZMPY3D, implemented in Python, is available on GitHub (https://github.com/tawssie/ZMPY3D) and PyPI, released under the GPL License.more » « less
An official website of the United States government
