Strong electronic nematic fluctuations have been discovered near optimal doping for several families of Fe-based superconductors, motivating the search for a possible link between these fluctuations, nematic quantum criticality, and high temperature superconductivity. Here we probe a key prediction of quantum criticality, namely power-law dependence of the associated nematic susceptibility as a function of composition and temperature approaching the compositionally tuned putative quantum critical point. To probe the ‘bare’ quantum critical point requires suppression of the superconducting state, which we achieve by using large magnetic fields, up to 45 T, while performing elastoresistivity measurements to follow the nematic susceptibility. We performed these measurements for the prototypical electron-doped pnictide, Ba(Fe1−
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract x Cox )2As2, over a dense comb of dopings. We find that close to the putative quantum critical point, the elastoresistivity appears to obey power-law behavior as a function of composition over almost a decade of variation in composition. Paradoxically, however, we also find that the temperature dependence for compositions close to the critical value cannot be described by a single power law. -
Digital three-dimensional (3-D) information concerning the location and condition of subsurface urban infrastructure is emerging as a potential new paradigm for aiding in the assessment, construction, emergency response, management, and planning of these vital assets. Subsurface infrastructure encompasses utilities (water, stormwater, wastewater, gas, electricity, telecommunications, steam, etc.), geotechnical formations, and the built underground (including tunnels, subways, garages and subsurface buildings). Traditional approaches for collecting location information include merging as-built drawings, historical records, and dead reckoning; and combining with information gathered by above-ground geophysical instruments, such as ground penetrating radars, magnetometers and acoustic sensors. This paper presents results of efforts aimed at using photogrammetric and augmented reality (AR) techniques to aid collecting, processing, and presenting 3-D location information.more » « less
-
null (Ed.)A bstract Jet production in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV is studied with the CMS detector at the LHC, using PbPb and pp data samples corresponding to integrated luminosities of 404 μ b − 1 and 27.4 pb − 1 , respectively. Jets with different areas are reconstructed using the anti- k T algorithm by varying the distance parameter R . The measurements are performed using jets with transverse momenta ( p T ) greater than 200 GeV and in a pseudorapidity range of |η| < 2. To reveal the medium modification of the jet spectra in PbPb collisions, the properly normalized ratio of spectra from PbPb and pp data is used to extract jet nuclear modification factors as functions of the PbPb collision centrality, p T and, for the first time, as a function of R up to 1.0. For the most central collisions, a strong suppression is observed for high- p T jets reconstructed with all distance parameters, implying that a significant amount of jet energy is scattered to large angles. The dependence of jet suppression on R is expected to be sensitive to both the jet energy loss mechanism and the medium response, and so the data are compared to several modern event generators and analytic calculations. The models considered do not fully reproduce the data.more » « less