skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burt, Carolyn S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Our ability to forecast the spatial and temporal patterns of ecological processes at continental scales has drastically improved over the past decade. Yet, predicting ecological patterns at broad scales while capturing fine-scale processes is a central challenge of ecological forecasting given the inherent tension between grain and extent, whereby enhancing one often diminishes the other. We leveraged 10 years of terrestrial and atmospheric data (2012–2021) to develop a high-resolution (2.9 × 2.9 km), radar-driven bird migration forecast model for a highly active region of the Mississippi flyway. Based on the suite of candidate models we examined, adding terrestrial predictors improved model performance only marginally, whereas spatially distant atmospheric predictors, particularly air temperature and wind speed from focal and distant regions, were major contributors to our top model, explaining 56% of variation in regional migration activity. Among terrestrial predictors, which ranked considerably lower than atmospheric predictors in terms of variable importance, vegetation phenology, artificial light at night, and percent of forest cover were the most important predictors. Furthermore, we scale this model to demonstrate the capacity to generate real-time, high-resolution forecasts for the continental United States that explained up to 65% of national variation. Our study demonstrates an approach for increasing the resolution of migration forecasts, which could facilitate the integration of radar with other data sources and inform dynamic conservation efforts at a local scale that is more relevant to threats, such as anthropogenic light at night. 
    more » « less
  2. Abstract Earth's lower atmosphere is a vital ecological habitat, home to trillions of organisms that live, forage, and migrate through this medium. Despite its importance, this space is seldom considered a primary habitat for ecological or conservation prioritization, making it one of the least studied environments. However, it plays a crucial role as a global conduit for the transfer of biomass, weather, and inorganic materials. Fundamental research is essential to address core ecological questions related to the ecological consequences of this habitat's intricate spatial and temporal structure. To advance our understanding of airspace use by migratory animals, we analyzed over 108 million 5‐min radar observations from 143 NEXRAD sites, focusing on 24‐h diel cycles across the contiguous United States. This extensive dataset, spanning from 1995 to 2022, allowed us to quantify aerial space use by systematically identifying peak activity times, the portion of the airspace that contained the majority of migration activity, and the percentage of migrants passing across diurnal and nocturnal diel cycles. We found that airspace is used predominantly during nocturnal periods in both spring and autumn (88%), while summer exhibited a more balanced distribution (54% nocturnal). Additionally, the percentage of nocturnal activity increased with latitude in spring and autumn but decreased in summer. Peak aerial activity typically occurred about 4 h after local sunset in both spring and autumn, with variations based on latitude and longitude. During these peak times, on average, half of the aerial movement was confined within a vertical band of 516 meters, starting around 355 m above ground level. Our research underscores the need to view the lower atmosphere as a structured habitat with significant ecological importance. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  3. Abstract As billions of nocturnal avian migrants traverse North America, twice a year they must contend with landscape changes driven by natural and anthropogenic forces, including the rapid growth of the artificial glow of the night sky. While airspaces facilitate migrant passage, terrestrial landscapes serve as essential areas to restore energy reserves and often act as refugia—making it critical to holistically identify stopover locations and understand drivers of use. Here, we leverage over 10 million remote sensing observations to develop seasonal contiguous United States layers of bird migrant stopover density. In over 70% of our models, we identify skyglow as a highly influential and consistently positive predictor of bird migration stopover density across the United States. This finding points to the potential of an expanding threat to avian migrants: peri-urban illuminated areas may act as ecological traps at macroscales that increase the mortality of birds during migration. 
    more » « less
  4. Light pollution is a global threat to biodiversity, especially migratory organisms, some of which traverse hemispheric scales. Research on light pollution has grown significantly over the past decades, but our review of migratory organisms demonstrates gaps in our understanding, particularly beyond migratory birds. Research across spatial scales reveals the multifaceted effects of artificial light on migratory species, ranging from local and regional to macroscale impacts. These threats extend beyond species that are active at night – broadening the scope of this threat. Emerging tools for measuring light pollution and its impacts, as well as ecological forecasting techniques, present new pathways for conservation, including transdisciplinary approaches. 
    more » « less
  5. null (Ed.)
    Monitoring avian migration within subarctic regions of the globe poses logistical challenges. Populations in these regions often encounter the most rapid effects of changing climates, and these seasonally productive areas are especially important in supporting bird populations—emphasizing the need for monitoring tools and strategies. To this end, we leverage the untapped potential of weather surveillance radar data to quantify active migration through the airspaces of Alaska. We use over 400 000 NEXRAD radar scans from seven stations across the state between 1995 and 2018 (86% of samples derived from 2013 to 2018) to measure spring and autumn migration intensity, phenology and directionality. A large bow-shaped terrestrial migratory system spanning the southern two-thirds of the state was identified, with birds generally moving along a northwest–southeast diagonal axis east of the 150th meridian, and along a northeast–southwest axis west of this meridian. Spring peak migration ranged from 3 May to 30 May and between, 18 August and 12 September during the autumn, with timing across stations predicted by longitude, rather than latitude. Across all stations, the intensity of migration was greatest during the autumn as compared to spring, highlighting the opportunity to measure seasonal indices of net breeding productivity for this important system as additional years of radar measurements are amassed. 
    more » « less