skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burton, Sethson Silton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Submerged plants can thrive entirely underwater, playing a crucial role in maintaining water quality, supporting aquatic organisms, and enhancing sediment stability. However, they face multiple challenges, including reduced light availability, fluctuating water conditions, and limited nutrient access. Despite these stresses, submerged plants demonstrate remarkable resilience through physiological and biochemical adaptations. Additionally, their interactions with microbial communities are increasingly recognized as pivotal in mitigating these environmental stresses. Understanding the diversity of these microbial communities is crucial for comprehending the complex interactions between submerged plants and their environments. This research aims to identify and screen microbes from submerged plant samples capable of producing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and to explore microbial diversity through metagenomic analysis. Microbes were isolated and screened for ACC deaminase production, and metagenomic techniques, including co-occurrence network analysis, were used to examine microbial diversity and interactions within the communities. ACC deaminase-producing microbes can significantly enhance plant metabolism under stress conditions. The identification of the culturable bacteria revealed that most of these microbes belong to the genera Pseudomonas, Bacillus, and Acinetobacter. A total of 177 microbial strains were cultured, with molecular identification revealing 79 reductant, 86 non-reductant, and 12 uncultured strains. Among 162 samples screened for ACC deaminase activity, 50 tested positive. To further understand microbial dynamics, samples were collected from both natural sources and artificial pond reservoirs to assess the impact of the location on flood-associated microbiomes in submerged plants. Metagenomic analysis was conducted on both the epiphytic and endophytic samples. By exploring the overall composition and dynamics of microbial communities associated with submerged plants, this research seeks to deepen our understanding of plant–microbe interactions in aquatic environments. The microbial screening helped to identify the diverse microbes associated with ACC deaminase activity in submerged plants and amplicon sequencing analysis paved the way towards identifying the impact of the location in shaping the microbiome and the diversity associated with endophytic and epiphytic microbes. Co-occurrence network analysis further highlighted the intricate interactions within these microbial communities. Notably, ACC deaminase activity was observed in plant-associated microbes across different locations, with distinct variations between epiphytic and endophytic populations as identified through co-occurrence network analysis. 
    more » « less