Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cloud computing has become a major approach to help reproduce computational experiments. Yet there are still two main difficulties in reproducing batch based big data analytics (including descriptive and predictive analytics) in the cloud. The first is how to automate end-to-end scalable execution of analytics including distributed environment provisioning, analytics pipeline description, parallel execution, and resource termination. The second is that an application developed for one cloud is difficult to be reproduced in another cloud, a.k.a. vendor lock-in problem. To tackle these problems, we leverage serverless computing and containerization techniques for automated scalable execution and reproducibility, and utilize the adapter design pattern to enable application portability and reproducibility across different clouds. We propose and develop an open-source toolkit that supports 1) fully automated end-to-end execution and reproduction via a single command, 2) automated data and configuration storage for each execution, 3) flexible client modes based on user preferences, 4) execution history query, and 5) simple reproduction of existing executions in the same environment or a different environment. We did extensive experiments on both AWS and Azure using four big data analytics applications that run on virtual CPU/GPU clusters. The experiments show our toolkit can achieve good execution performance, scalability, and efficient reproducibility for cloud-based big data analytics.more » « less
-
With the advancement of modern robotics, autonomous agents are now capable of hosting sophisticated algorithms, which enables them to make intelligent decisions. But developing and testing such algorithms directly in real-world systems is tedious and may result in the wastage of valuable resources. Especially for heterogeneous multi-agent systems in battlefield environments where communication is critical in determining the system’s behavior and usability. Due to the necessity of simulators of separate paradigms (co-simulation) to simulate such scenarios before deploying, synchronization between those simulators is vital. Existing works aimed at resolving this issue fall short of addressing diversity among deployed agents. In this work, we propose SynchroSim, an integrated co-simulation middleware to simulate a heterogeneous multi-robot system. Here we propose a velocity difference-driven adjustable window size approach with a view to reducing packet loss probability. It takes into account the respective velocities of deployed agents to calculate a suitable window size before transmitting data between them. We consider our algorithm specific simulator agnostic but for the sake of implementation results, we have used Gazebo as a Physics simulator and NS-3 as a network simulator. Also, we design our algorithm considering the Perception-Action loop inside a closed communication channel, which is one of the essential factors in a contested scenario with the requirement of high fidelity in terms of data transmission. We validate our approach empirically at both the simulation and system level for both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Our approach achieves a noticeable improvement in terms of reducing packet loss probability (≈11%), and average packet delay (≈10%) compared to the fixed window size-based synchronization approach.more » « less