skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buss, Justin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Emotion recognition algorithms recognize, infer, and harvest emotions using data sources such as social media behavior, streaming service use, voice, facial expressions, and biometrics in ways often opaque to the people providing these data. People's attitudes towards emotion recognition and the harms and outcomes they associate with it are important yet unknown. Focusing on social media, we interviewed 13 adult U.S. social media users to fill this gap. We find that people view emotions as insights to behavior, prone to manipulation, intimate, vulnerable, and complex. Many find emotion recognition invasive and scary, associating it with autonomy and control loss. We identify two categories of emotion recognition's risks: individual and societal. We discuss findings' implications for algorithmic accountability and argue for considering emotion data as sensitive. Using a Science and Technology Studies lens, we advocate that technology users should be considered as a relevant social group in emotion recognition advancements. 
    more » « less