Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Particle tracking is commonly used to study time-dependent behavior in many different types of physical and chemical systems involving constituents that span many length scales, including atoms, molecules, nanoparticles, granular particles, and even larger objects. Behaviors of interest studied using particle tracking information include disorder-order transitions, thermodynamic phase transitions, struc- tural transitions, protein folding, crystallization, gelation, swarming, avalanches and fracture. A common challenge in studies of these systems involves change detection. Change point detection discerns when a temporal signal undergoes a change in distribution. These changes can be local or global, instantaneous or prolonged, obvious or subtle. Moreover, system-wide changes marking an interesting physical or chemical phenomenon (e.g. crystallization of a liquid) are often preceded by events (e.g. pre-nucleation clusters) that are localized and can occur anywhere at anytime in the system. For these reasons, detecting events in particle trajectories generated by molecular simulation is challenging and typically accomplished via ad hoc solutions unique to the behavior and system under study. Consequently, methods for event detec- tion lack generality, and those used in one field are not easily used by scientists in other fields. Here we present a new Python-based tool, dupin, that allows for universal event detection from particle trajectory data irrespective of the system details. dupin works by creating a signal representing the simulation and partitioning the signal based on events (changes within the trajectory). This approach allows for studies where manual annotating of event boundaries would require a prohibitive amount of time. Furthermore, dupin can serve as a tool in automated and reproducible workflows. We demonstrate the application of dupin using two examples and discuss its applicability to a wider class of problems.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Wallqvist, Anders (Ed.)Many pathogenic missense mutations are found in protein positions that are neither well-conserved nor fall in any known functional domains. Consequently, we lack any mechanistic underpinning of dysfunction caused by such mutations. We explored the disruption of allosteric dynamic coupling between these positions and the known functional sites as a possible mechanism for pathogenesis. In this study, we present an analysis of 591 pathogenic missense variants in 144 human enzymes that suggests that allosteric dynamic coupling of mutated positions with known active sites is a plausible biophysical mechanism and evidence of their functional importance. We illustrate this mechanism in a case study of β-Glucocerebrosidase (GCase) in which a vast majority of 94 sites harboring Gaucher disease-associated missense variants are located some distance away from the active site. An analysis of the conformational dynamics of GCase suggests that mutations on these distal sites cause changes in the flexibility of active site residues despite their distance, indicating a dynamic communication network throughout the protein. The disruption of the long-distance dynamic coupling caused by missense mutations may provide a plausible general mechanistic explanation for biological dysfunction and disease.more » « less
An official website of the United States government
