Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The demand for memory is ever increasing. Many prior works have explored hardware memory compression to increase effective memory capacity. However, prior works compress and pack/migrate data at a small - memory blocklevel - granularity; this introduces an additional block-level translation after the page-level virtual address translation. In general, the smaller the granularity of address translation, the higher the translation overhead. As such, this additional block-level translation exacerbates the well-known address translation problem for large and/or irregular workloads. A promising solution is to only save memory from cold (i.e., less recently accessed) pages without saving memory from hot (i.e., more recently accessed) pages (e.g., keep the hot pages uncompressed); this avoids block-level translation overhead for hot pages. However, it still faces two challenges. First, after a compressed cold page becomes hot again, migrating the page to a full 4KB DRAM location still adds another level (albeit page-level, instead of block-level) of translation on top of existing virtual address translation. Second, only compressing cold data require compressing them very aggressively to achieve high overall memory savings; decompressing very aggressively compressed data is very slow (e.g., > 800ns assuming the latest Deflate ASIC in industry). This paper presents Translation-optimized Memory Compression formore »Free, publicly-accessible full text available October 1, 2023
-
Free, publicly-accessible full text available July 14, 2023
-
Free, publicly-accessible full text available May 19, 2023
-
Free, publicly-accessible full text available March 1, 2023
-
DELAUNAYSPARSE contains both serial and parallel codes written in Fortran 2003 (with OpenMP) for performing medium- to high-dimensional interpolation via the Delaunay triangulation. To accommodate the exponential growth in the size of the Delaunay triangulation in high dimensions, DELAUNAYSPARSE computes only a sparse subset of the complete Delaunay triangulation, as necessary for performing interpolation at the user specified points. This article includes algorithm and implementation details, complexity and sensitivity analyses, usage information, and a brief performance study.