skip to main content

Search for: All records

Creators/Authors contains: "Bychkova, O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The production of Z bosons associated with jets is measured in $$\text {p}\text {p}$$ pp collisions at $$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3 $$\,\text {fb}^{-1}$$ fb - 1 . The multiplicity of jets with transverse momentum $$p_{\textrm{T}} > 30\,\text {Ge}\hspace{-.08em}\text {V} $$ p T > 30 Ge V is measured for different regions of the Z boson’s $$p_{\textrm{T}} (\text {Z })$$ p T ( Z ) , from lower than 10 $$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V to higher than 100 $$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V . The azimuthal correlation $$\varDelta \phi $$ Δ ϕ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of $$p_{\textrm{T}} (\text {Z })$$ p T ( Z ) . The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects ofmore »multiple parton interactions are shown to be important to correctly describe the measured spectra in the low $$p_{\textrm{T}} (\text {Z })$$ p T ( Z ) regions.« less
    Free, publicly-accessible full text available August 1, 2024
  2. A bstract A search is performed for exclusive high-mass γγ → WW and γγ → ZZ production in proton-proton collisions using intact forward protons reconstructed in near-beam detectors, with both weak bosons decaying into boosted and merged jets. The analysis is based on a sample of proton-proton collisions collected by the CMS and TOTEM experiments at $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 100 fb − 1 . No excess above the standard model background prediction is observed, and upper limits are set on the pp → pWWp and pp → pZZp cross sections in a fiducial region defined by the diboson invariant mass m (VV) > 1 TeV (with V = W , Z) and proton fractional momentum loss 0 . 04 < ξ < 0 . 20. The results are interpreted as new limits on dimension-6 and dimension-8 anomalous quartic gauge couplings.
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract Multijet events at large transverse momentum ( $$p_{\textrm{T}}$$ p T ) are measured at $$\sqrt{s}=13\,\text {TeV} $$ s = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of $$36.3{\,\text {fb}^{-1}} $$ 36.3 fb - 1 . The multiplicity of jets with $$p_{\textrm{T}} >50\,\text {GeV} $$ p T > 50 GeV that are produced in association with a high- $$p_{\textrm{T}}$$ p T dijet system is measured in various ranges of the $$p_{\textrm{T}}$$ p T of the jet with the highest transverse momentum and as a function of the azimuthal angle difference $$\varDelta \phi _{1,2}$$ Δ ϕ 1 , 2 between the two highest $$p_{\textrm{T}}$$ p T jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest $$p_{\textrm{T}}$$ p T jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower.
    Free, publicly-accessible full text available August 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. A bstract A search for the exotic decay of the Higgs boson to a pair of light pseudoscalars, each of which subsequently decays into a pair of photons, is presented. The search uses data from proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV recorded with the CMS detector at the LHC that corresponds to an integrated luminosity of 132 fb − 1 . The analysis probes pseudoscalar bosons with masses in the range 15–62 GeV, coming from the Higgs boson decay, which leads to four well-isolated photons in the final state. No significant deviation from the background-only hypothesis is observed. Upper limits are set on the product of the Higgs boson production cross section and branching fraction into four photons. The observed (expected) limits range from 0.80 (1.00) fb for a pseudoscalar boson mass of 15 GeV to 0.26 (0.24) fb for a mass of 62 GeV at 95% confidence level.
    Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available July 1, 2024
  7. A bstract The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb − 1 . A 95% confidence level upper limit of 32.4 is set on the signal strength modifier μ , defined as the ratio of the observed HH production rate in the $$ \textrm{HH}\to {\textrm{ZZ}}^{\ast}\textrm{b}\overline{\textrm{b}}\to 4\ell \textrm{b}\overline{\textrm{b}} $$ HH → ZZ ∗ b b ¯ → 4 ℓ b b ¯ decay channel to the standard model (SM) expectation. Possible modifications of the H trilinear coupling λ HHH with respect to the SM value are investigated. The coupling modifier κ λ , defined as λ HHH divided by its SM prediction, is constrained to be within the observed (expected) range − 8 . 8 ( − 9 . 8) < κ λ < 13 . 4 (15 . 0) at 95% confidence level.
    Free, publicly-accessible full text available June 1, 2024
  8. A bstract A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron–muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb − 1 at $$ \sqrt{s} $$ s = 7 TeV and about 20 fb − 1 at $$ \sqrt{s} $$ s = 8 TeV for each experiment. The combined cross-sections are determined to be 178 . 5 ± 4 . 7 pb at $$ \sqrt{s} $$ s = 7 TeV and $$ {243.3}_{-5.9}^{+6.0} $$ 243.3 − 5.9 + 6.0 pb at $$ \sqrt{s} $$ s = 8 TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be R 8 / 7 = 1 . 363 ± 0 . 032. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118)more »and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $$ {m}_t^{\textrm{pole}}={173.4}_{-2.0}^{+1.8} $$ m t pole = 173.4 − 2.0 + 1.8 GeV and $$ {\alpha}_{\textrm{s}}\left({m}_Z\right)={0.1170}_{-0.0018}^{+0.0021} $$ α s m Z = 0.1170 − 0.0018 + 0.0021 .« less
    Free, publicly-accessible full text available July 1, 2024
  9. Free, publicly-accessible full text available December 1, 2023
  10. Abstract Since the discovery of the Higgs boson in 2012, detailed studies of its properties have been ongoing. Besides its mass, its width—related to its lifetime—is an important parameter. One way to determine this quantity is to measure its off-shell production, where the Higgs boson mass is far away from its nominal value, and relating it to its on-shell production, where the mass is close to the nominal value. Here we report evidence for such off-shell contributions to the production cross-section of two Z bosons with data from the CMS experiment at the CERN Large Hadron Collider. We constrain the total rate of the off-shell Higgs boson contribution beyond the Z boson pair production threshold, relative to its standard model expectation, to the interval [0.0061, 2.0] at the 95% confidence level. The scenario with no off-shell contribution is excluded at a p -value of 0.0003 (3.6 standard deviations). We measure the width of the Higgs boson as $${{{\varGamma }}}_{{{{{{\rm{H}}}}}}}={3.2}_{-1.7}^{+2.4}\,{{{{{\rm{MeV}}}}}}$$ Γ H = 3.2 − 1.7 + 2.4 MeV , in agreement with the standard model expectation of 4.1 MeV. In addition, we set constraints on anomalous Higgs boson couplings to W and Z boson pairs.
    Free, publicly-accessible full text available November 1, 2023