skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Byers, James E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Examining community responses to habitat configuration across scales informs basic and applied models of ecosystem function. Responses to patch‐scale edge effects (i.e., ecological differences between patch edges and interiors) are hypothesized to underpin the effects of landscape‐scale fragmentation (i.e., mosaics of multipatch habitat and matrix). Conceptually, this appears justifiable because fragmented habitats typically have a greater proportion of edge than continuous habitats. To critically inspect whether patch‐scale edge effects translate consistently (i.e., scale up) into patterns observed in fragmented landscapes, we conducted a meta‐analysis on community relationships in seagrass ecosystems to synthesize evidence of edge and fragmentation effects on shoot density, faunal densities, and predation rates. We determined effect sizes by calculating log response ratios for responses within patch edges versus interiors to quantify edge effects, and fragmented versus continuous landscapes to quantify fragmentation effects. We found that both edge and fragmentation effects reduced seagrass shoot densities, although the effect of edge was statistically stronger. By contrast, fauna often exhibited higher densities in patch edges, while fragmentation responses varied directionally across taxa. Fish densities trended higher in patch edges and fragmented landscapes. Benthic fishes responded more positively than benthopelagic fishes to edge effects, although neither guild strongly responded to fragmentation. Invertebrate densities increased in patch edges and trended lower in fragmented landscapes; however, these were small effect sizes due to the offsetting responses of two dominant epifaunal guilds: decapods and smaller crustaceans. Edge and fragmentation affected predation similarly, with prey survival trending lower in patch edges and fragmented landscapes. Overall, several similarities suggested that edge effects conform with patterns of community dynamics in fragmented seagrass. However, across all metrics except fish densities, variability in fragmentation effects was twice that of edge effects. Variance patterns combined with generally stronger responses to edge than fragmentation, warrant caution in unilaterally “scaling‐up” edge effects to describe fragmentation effects. Alternatively, fragmentation includes additional factors (e.g., matrix effects, patch number, mean patch size, isolation) that may enhance or offset edge effects. Fragmentation and increased edge are syndromes of habitat degradation, therefore this analysis informs mechanistic models of community change in altered terrestrial and marine systems.

     
    more » « less
  2. ABSTRACT

    Non‐indigenous species (NIS) and hypoxia (<2 mg O2l−1) can disturb and restructure aquatic communities. Both are heavily influenced by human activities and are intensifying with global change. As these disturbances increase, understanding how they interact to affect native species and systems is essential. To expose patterns, outcomes, and generalizations, we thoroughly reviewed the biological invasion literature and compiled 100 studies that examine the interaction of hypoxia and NIS. We found that 64% of studies showed that NIS are tolerant of hypoxia, and 62% showed that NIS perform better than native species under hypoxia. Only one‐quarter of studies examined NIS as creators of hypoxia; thus, NIS are more often considered passengers associated with hypoxia, rather than drivers of it. Paradoxically, the NIS that most commonly create hypoxia are primary producers. Taxa like molluscs are typically more hypoxia tolerant than mobile taxa like fish and crustaceans. Most studies examine individual‐level or localized responses to hypoxia; however, the most extensive impacts occur when hypoxia associated with NIS affects communities and ecosystems. We discuss how these influences of hypoxia at higher levels of organization better inform net outcomes of the biological invasion process, i.e. establishment, spread, and impact, and are thus most useful to management. Our review identifies wide variation in the way in which the interaction between hypoxia and NIS is studied in the literature, and suggests ways to address the number of variables that affect their interaction and refine insight gleaned from future studies. We also identify a clear need for resource management to consider the interactive effects of these two global stressors which are almost exclusively managed independently.

     
    more » « less
  3. Abstract

    Resident species can facilitate invading species (biotic assistance) or inhibit their expansion (biotic resistance). Species interactions are often context‐dependent and the relative importance of biotic assistance versus resistance could vary with abiotic conditions or the life stage of the invading species, as invader stress tolerances and resource requirements change with ontogeny. In northeast Florida salt marshes, the abundant dead litter (wrack) of the native marsh cordgrass,Spartina alterniflora, could influence the expansion success of the black mangrove,Avicennia germinans, a tropical species that is expanding its range northward.

    We used two field experiments to examine howS. alterniflorawrack affectsA. germinanssuccess during (a) propagule establishment and (b) subsequent seedling survival. We also conducted laboratory feeding assays to identify propagule consumers and assess how wrack presence influences herbivory on mangrove propagules.

    Spartina alterniflorawrack facilitatedA. germinansestablishment by promoting propagule recruitment, retention and rooting; the tidal regime influenced the magnitude of these effects. However, over timeS. alterniflorawrack inhibitedA. germinansseedling success by smothering seedlings and attracting herbivore consumers. Feeding assays identified rodents—which seek refuge in wrack—as consumers ofA. germinanspropagules.

    Synthesis. Our results suggest that the deleterious effects ofS. alterniflorawrack onA. germinansseedling survival counterbalance the initial beneficial effects of wrack onA. germinansseed establishment. Such seed‐seedling conflicts can arise when species stress tolerances and resource requirements change throughout development and vary with abiotic conditions. In concert with the tidal conditions, the relative importance of positive and negative interactions with wrack at each life stage can influence the rate of local and regional mangrove expansion. Because interaction strengths can change in direction and magnitude with ontogeny, it is essential to examine resident–invader interactions at multiple life stages and across environmental gradients to uncover the mechanisms of biotic assistance and resistance during invasion.

     
    more » « less
  4. Abstract

    Human‐altered shorelines make up approximately 14% of the coastline in the United States, with consequences for marsh ecosystems ranging from altered physical and biological variables, to direct loss of intertidal marsh habitat, to diminished land–sea connectivity. Trophically transmitted parasites that require connectivity between upland host species and marsh host species to complete their complex lifecycles could be particularly sensitive to the effects of shoreline alterations. They can additionally respond to gradients in natural physical and biological factors, including the host communities, that are often sharp at the land–sea ecotone. Across 27 salt marshes over 45 km, we evaluated the effects of environmental variables and three types of land use (undeveloped; single‐house adjacent to the marsh with small‐scale shoreline armoring; and single‐house adjacent to the marsh without shoreline armoring), on infection prevalence and intensity of the trematodeMicrophallus basodactylophallusin its second intermediate crab host,Minuca pugnax. The first intermediate hosts ofM. basodactylophallusare Hydrobiid snail species that are obligate marsh residents, while the definitive hosts are terrestrial rodents and raccoons. Thus, trematode transmission must depend on cross‐boundary movement by the definitive hosts. We found that although there was a trend of lower infection prevalence at undeveloped forested sites, there was no significant effect of adjacent land development on infection prevalence or intensity. Instead host, biotic and abiotic factors were correlated with infection; namely, largerM. pugnaxhad higher prevalence and intensity ofMbasodactylophallus, and higher soil moisture and lower density of the ribbed mussel (Geukensia demissa) were associated with increasedM. basodactylophallusprevalence. The small, indirect influence of upland development suggests that movement of definite hosts across the ecotone may be largely unaffected. Further, the robust trematode levels signify the ecosystem and the species interactions, upon which its complex lifecycle depends, are largely intact.

     
    more » « less
  5. Abstract

    When prey alter behavioral or morphological traits to reduce predation risk, they often incur fitness costs through reduced growth and reproduction as well as increased mortality that are known as nonconsumptive effects (NCEs). Environmental context and trophic structure can individually alter the strength of NCEs, yet the interactive influence of these contexts in natural settings is less understood. At six sites across 1000 km of the Southeastern Atlantic Bight (SAB), we constructed oyster reefs with one, two, or three trophic levels and evaluated the traits of focal juvenile oysters exposed to predation risk cues. We monitored environmental variables (water flow velocity, microalgal resources, and oyster larval recruitment) that may have altered how oysters respond to risk, and we also assessed the cost of trait changes to oyster mortality and growth when they were protected from direct predatory loss. Regardless of trophic structure, we found that oyster shell strength and natural oyster recruitment peaked at the center of the region. This high recruitment negated the potential for NCEs by smothering and killing the focal oysters. Also independent of trophic structure, focal oysters grew the most at the northernmost site. In contrast to, and perhaps because of, these strong environmental effects, the oyster traits of condition index and larval recruitment were only suppressed by the trophic treatment with a full complement of risk cues from intermediate and top predators at just the southernmost site. But at this same site, statistically significant NCEs on oyster growth and mortality were not detected. More strikingly, our study demonstrated environmental gradients that differentially influence oysters throughout the SAB. In particular, the results of our trophic manipulation experiment across these gradients suggest that in the absence of predation, environmental differences among sites may overwhelm the influence of NCEs on prey traits and population dynamics.

     
    more » « less
  6. Abstract

    The rapid growth of the aquaculture industry to meet global seafood demand offers both risks and opportunities for resource management and conservation. In particular, hatcheries hold promise for stock enhancement and restoration, yet cultivation practices may lead to enhanced variation between populations at the expense of variation within populations, with uncertain implications for performance and resilience. To date, few studies have assessed how production techniques impact genetic diversity and population structure, as well as resultant trait variation in and performance of cultivated offspring. We collaborated with a commercial hatchery to produce multiple cohorts of the eastern oyster (Crassostrea virginica) from field‐collected broodstock using standard practices. We recorded key characteristics of the broodstock (male : female ratio, effective population size), quantified the genetic diversity of the resulting cohorts, and tested their trait variation and performance across multiple field sites and experimental conditions. Oyster cohorts produced under the same conditions in a single hatchery varied almost twofold in genetic diversity. In addition, cohort genetic diversity was a significant positive predictor of oyster performance traits, including initial size and survival in the field. Oyster cohorts produced in the hatchery had lower within‐cohort genetic variation and higher among‐cohort genetic structure than adults surveyed from the same source sites. These findings are consistent with “sweepstakes reproduction” in oysters, even when manually spawned. A readily measured characteristic of broodstock, the ratio of males to females, was positively correlated with within‐cohort genetic diversity of the resulting offspring. Thus, this metric may offer a tractable way both to meet short‐term production goals for seafood demand and to ensure the capacity of hatchery‐produced stock to achieve conservation objectives, such as the recovery of self‐sustaining wild populations.

     
    more » « less
  7. Abstract

    Although species interactions are often assumed to be strongest at small spatial scales, they can interact with regional environmental factors to modify food web dynamics across biogeographic scales. The eastern oyster (Crassostrea virginica) is a widespread foundational species of both ecological and economic importance. The oyster and its associated assemblage of fish and macroinvertebrates is an ideal system to investigate how regional differences in environmental variables influence trophic interactions and food web structure. We quantified multiple environmental factors, oyster reef properties, associated species, and trophic guilds on intertidal oyster reefs within 10 estuaries along 900 km of the southeastern United States. Geographical gradients in fall water temperature and mean water depth likely influenced regional (i.e., the northern, central and southern sections of the SAB) variation in oyster reef food web structure. Variation in the biomass of mud crabs, an intermediate predator, was mostly (84.1%) explained by reefs within each site, and did not differ substantially among regions; however, regional variation in the biomass of top predators and of juvenile oysters also contributed to biogeographic variation in food web structure. In particular, region explained almost half (40.2%) of the variation in biomass of predators of blue crab, a top predator that was prevalent only in the central region where water depth was greater. Field experiments revealed that oyster mortality due to predation was greatest in the central region, suggesting spatial variation in the importance of trophic cascades. However, high oyster recruitment in the middle region probably compensates for this enhanced predation, potentially explaining why relatively less variation (17.9%) in oyster cluster biomass was explained by region. Region also explained over half of the variation in biomass of mud crab predators (55.2%), with the southern region containing almost an order of magnitude more biomass than the other two regions. In this region, higher water temperatures in the fall corresponded with higher biomass of fish that consume mud crabs and of fish that consume juvenile and forage fish, whereas biomas of their prey (mud crabs and juvenile and forage fish, respectively) was generally low in the southern region. Collectively, these results show how environmental gradients interact with trophic cascades to structure food webs associated with foundation species across biogeographic regions.

     
    more » « less