skip to main content


Search for: All records

Creators/Authors contains: "Byers, Todd A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ikeda, Tokihiro (Ed.)
    We have investigated the concentration and correlation between the macro and micro-elements found in an herbal plant named Ocimum sanctum (Tulsi) leaf, using Particle-Induced X-ray Emission (PIXE) spectroscopy. The leaf area was analyzed with a 2 MeV scanning proton micro-beam with a spot size of ~ 1 square micrometer. This study is focused on exploring the correlation between the elemental maps generated using X-ray spectra with micro-PIXE. Two types of correlations i.e., elemental, and concentration-phase correlations were examined. The elemental maps are used to find the relation between the spatial distribution of the elements present in the scanned region while the correlation maps help in understanding which phase corresponds to the region of selected concentration ratios. All the elemental concentrations were determined with the detection limits in ng/mg. The analysis of macro-elements showed that the potassium concentration was highest and phosphorus exhibited the lowest concentration whereas iron was found to be highest in the category of trace or microelements. Moreover, broad-beam runs were also performed on the samples to examine the trend for elemental concentrations. 
    more » « less
    Free, publicly-accessible full text available June 8, 2025
  2. Mixed organic–inorganic halide perovskite-based solar cells have attracted interest in recent years due to their potential for both terrestrial and space applications. Analysis of interfaces is critical to predicting device behavior and optimizing device architectures. Most advanced tools to study buried interfaces are destructive in nature and can induce further degradation. Ion beam techniques, such as Rutherford backscattering spectrometry (RBS), is a useful non-destructive method to probe an elemental depth profile of multilayered perovskite solar cells (PSCs) as well as to study the inter-diffusion of various elemental species across interfaces. Additionally, PSCs are becoming viable candidates for space photovoltaic applications, and it is critical to investigate their radiation-induced degradation. RBS can be simultaneously utilized to analyze the radiation effects induced by He+ beam on the device, given their presence in space orbits. In the present work, a 2 MeV He+ beam was used to probe the evidence of elemental diffusion across PSC interfaces with architecture glass/ITO/SnO2/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/spiro-OMeTAD/MoO3/Au. During the analysis, the device active area was exposed to an irradiation equivalent of up to 1.62 × 1015 He+/cm2, and yet, no measurable evidence (with a depth resolution ∼1 nm) of beam-induced ion migration was observed, implying high radiation tolerance of PSCs. On the other hand, aged PSCs exhibited indications of the movement of diverse elemental species, such as Au, Pb, In, Sn, Br, and I, in the active area of the device, which was quantified with the help of RBS.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  3. ACIGS solar cells are exposed to targeted radiation to probe the front and back interfaces of the absorber to assess the impact of space environments on these systems. These data suggest ACIGS cells are more radiation‐hard than early CIGS devices likely due to the lower defect densities and more ideal interfaces in the ACIGS system. A combination ofJVand external quantum efficiency measurements indicates some improvement in the performance of the device due to the effects of local heating in the dominant ionizing electronic energy loss regime of proton irradiation that anneal the upper CdS/ACIGS interface. However, nonionizing energy losses at the base of the solar cell also appear to inhibit minority carrier collection from the back of the cell at the ACIGS/Mo interface, which is discussed in terms of defect‐mediated changes in the doping profile, the Ga/Ga+In ratio, and impurity composition after proton irradiation.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  4. Natalie Lok Kwan Li, PhD (Ed.)
    Perovskite photovoltaics have been shown to recover, or heal, after radiation damage. Here, we deconvolve the effects of radiation based on different energy loss mechanisms from incident protons which induce defects or can promote efficiency recovery. We design a dual dose experiment first exposing devices to low-energy protons efficient in creating atomic displacements. Devices are then irradiated with high-energy protons that interact differently. Correlated with modeling, high-energy protons (with increased ionizing energy loss component) effectively anneal the initial radiation damage, and recover the device efficiency, thus directly detailing the different interactions of irradiation. We relate these differences to the energy loss (ionization or non-ionization) using simulation. Dual dose experiments provide insight into understanding the radiation response of perovskite solar cells and highlight that radiation-matter interactions in soft lattice materials are distinct from conventional semiconductors. These results present electronic ionization as a unique handle to remedying defects and trap states in perovskites. 
    more » « less
    Free, publicly-accessible full text available January 24, 2025
  5. The high tolerance and stability of triple halide perovskite solar cells is demonstrated in practical space conditions at high irradiation levels. The solar cells were irradiated for a range of proton energies (75 keV, 300 keV, and 1 MeV) and fluences (up to 4 × 1014 p/cm2). The fluences of the energy proton irradiations were varied to induce the same amount of vacancies in the absorber layer due to non-ionizing nuclear energy loss (predominant at <300 keV) and electron ionization loss (predominant at >300 keV). While proton irradiation of the solar cells initially resulted in degradation of the photovoltaic parameters, self-healing was observed after two months where the performance of the devices was shown to return to their pristine operation levels. Their ability to recover upon radiation exposure supports the practical potential of perovskite solar cells for next-generation space missions.

     
    more » « less