Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Biogeographic history can set initial conditions for vegetation community assemblages that determine their climate responses at broad extents that land surface models attempt to forecast. Numerous studies have indicated that evolutionarily conserved biochemical, structural, and other functional attributes of plant species are captured in visible-to-short wavelength infrared, 400 to 2,500 nm, reflectance properties of vegetation. Here, we present a remotely sensed phylogenetic clustering and an evolutionary framework to accommodate spectra, distributions, and traits. Spectral properties evolutionarily conserved in plants provide the opportunity to spatially aggregate species into lineages (interpreted as “lineage functional types” or LFT) with improved classification accuracy. In this study, we use Airborne Visible/Infrared Imaging Spectrometer data from the 2013 Hyperspectral Infrared Imager campaign over the southern Sierra Nevada, California flight box, to investigate the potential for incorporating evolutionary thinking into landcover classification. We link the airborne hyperspectral data with vegetation plot data from 1372 surveys and a phylogeny representing 1,572 species. Despite temporal and spatial differences in our training data, we classified plant lineages with moderate reliability (Kappa = 0.76) and overall classification accuracy of 80.9%. We present an assessment of classification error and detail study limitations to facilitate future LFT development. This work demonstrates that lineage-based methods may be a promising way to leverage the new-generation high-resolution and high return-interval hyperspectral data planned for the forthcoming satellite missions with sparsely sampled existing ground-based ecological data.more » « less
-
Abstract Evolutionary relatedness underlies patterns of functional diversity in the natural world. Hyperspectral remote sensing has the potential to detect these patterns in plants through inherited patterns of leaf reflectance spectra. We collected leaf reflectance data across the California flora from plants grown in a common garden. Regions of the reflectance spectra vary in the depth and strength of phylogenetic signal. We also show that these differences are much greater than variation due to the geographic origin of the plant. At the phylogenetic extent of the California flora, spectral variation explained by the combination of ecotypic variation (divergent evolution) and convergent evolution of disparate lineages was minimal (3%–7%) but statistically significant. Interestingly, at the extent of a single genus (Arctostaphylos) no unique variation could be attributed to geographic origin. However, up to 18% of the spectral variation amongArctostaphylosindividuals was shared between phylogeny and intraspecific variation stemming from ecotypic differences (i.e., geographic origin). Future studies could conduct more structured experiments (e.g., transplants or observations along environmental gradients) to disentangle these sources of variation and include other intraspecific variation (e.g., plasticity). We constrain broad‐scale spectral variability due to ecotypic sources, providing further support for the idea that phylogenetic clusters of species might be detectable through remote sensing. Phylogenetic clusters could represent a valuable dimension of biodiversity monitoring and detection.more » « less
-
Summary Spatiotemporal patterns ofSpartina alterniflorabelowground biomass (BGB) are important for evaluating salt marsh resiliency. To solve this, we created the BERM (Belowground Ecosystem Resiliency Model), which estimates monthly BGB (30‐m spatial resolution) from freely available data such as Landsat‐8 and Daymet climate summaries.Our modeling framework relied on extreme gradient boosting, and used field observations from four Georgia salt marshes as ground‐truth data. Model predictors included estimated tidal inundation, elevation, leaf area index, foliar nitrogen, chlorophyll, surface temperature, phenology, and climate data. The final model included 33 variables, and the most important variables were elevation, vapor pressure from the previous four months, Normalized Difference Vegetation Index (NDVI) from the previous five months, and inundation.Root mean squared error for BGB from testing data was 313 g m−2(11% of the field data range), explained variance (R2) was 0.62–0.77. Testing data results were unbiased across BGB values and were positively correlated with ground‐truth data across all sites and years (r = 0.56–0.82 and 0.45–0.95, respectively).BERM can estimate BGB withinSpartina alterniflorasalt marshes where environmental parameters are within the training data range, and can be readily extended through a reproducible workflow. This provides a powerful approach for evaluating spatiotemporal BGB and associated ecosystem function.more » « less