- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Căldăraru, Andrei (4)
-
Tu, Junwu (2)
-
Arinkin, Dima (1)
-
Hablicsek, Márton (1)
-
Knapp, Johanna (1)
-
Li, Si (1)
-
Sharpe, Eric (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We compute the $g=1$ , $n=1$ B-model Gromov–Witten invariant of an elliptic curve $$E$$ directly from the derived category $$\mathsf{D}_{\mathsf{coh}}^{b}(E)$$ . More precisely, we carry out the computation of the categorical Gromov–Witten invariant defined by Costello using as target a cyclic $$\mathscr{A}_{\infty }$$ model of $$\mathsf{D}_{\mathsf{coh}}^{b}(E)$$ described by Polishchuk. This is the first non-trivial computation of a positive-genus categorical Gromov–Witten invariant, and the result agrees with the prediction of mirror symmetry: it matches the classical (non-categorical) Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf.more » « less
-
Arinkin, Dima; Căldăraru, Andrei; Hablicsek, Márton (, Journal of Algebra)
-
Căldăraru, Andrei; Knapp, Johanna; Sharpe, Eric (, Journal of High Energy Physics)
-
Căldăraru, Andrei; Li, Si; Tu, Junwu (, International Mathematics Research Notices)Abstract We introduce a categorical analogue of Saito’s notion of primitive forms. For the category $$\textsf{MF}(\frac{1}{n+1}x^{n+1})$$ of matrix factorizations of $$\frac{1}{n+1}x^{n+1}$$, we prove that there exists a unique, up to non-zero constant, categorical primitive form. The corresponding genus zero categorical Gromov–Witten invariants of $$\textsf{MF}(\frac{1}{n+1}x^{n+1})$$ are shown to match with the invariants defined through unfolding of singularities of $$\frac{1}{n+1}x^{n+1}$$.more » « less
An official website of the United States government
