skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "C. Haudek, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This study develops a framework to conceptualize the use and evolution of machine learning (ML) in science assessment. We systematically reviewed 47 studies that applied ML in science assessment and classified them into five categories: (a) constructed response, (b) essay, (c) simulation, (d) educational game, and (e) inter‐discipline. We compared the ML‐based and conventional science assessments and extracted 12 critical characteristics to map three variables in a three‐dimensional framework:construct,functionality, andautomaticity. The 12 characteristics used to construct a profile for ML‐based science assessments for each article were further analyzed by a two‐step cluster analysis. The clusters identified for each variable were summarized into four levels to illustrate the evolution of each. We further conducted cluster analysis to identify four classes of assessment across the three variables. Based on the analysis, we conclude that ML has transformed—but notyetredefined—conventional science assessment practice in terms of fundamental purpose, the nature of the science assessment, and the relevant assessment challenges. Along with the three‐dimensional framework, we propose five anticipated trends for incorporating ML in science assessment practice for future studies: addressing developmental cognition, changing the process of educational decision making, personalized science learning, borrowing 'good' to advance 'good', and integrating knowledge from other disciplines into science assessment.

     
    more » « less