skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "C. Snyder"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Disciplinary Data Science Topic: Statistics - Descriptive Statistics, Histograms, Scatter Plot Data Science Learning Goals: Students will know how to calculate basic statistics such as mean, standard deviation and relate the use of these statistics learned in class with real-world data and use them to describe the data Students will be able to construct visualization tools such as a histogram to get the range and distribution of the data set. Students will also learn how to interpret the results. Students will be able to use popular data science tools such as Python to analyze the data. 
    more » « less
  2. With increasingly technology-driven workplaces and high data volumes, instructors across STEM+C disciplines are integrating more data science topics into their course learning objectives. However, instructors face significant challenges in integrating additional data science concepts into their already full course schedules. Streamlined instructional modules that are integrated with course content, and cover relevant data science topics, such as data collection, uncertainty in data, visualization, and analysis using statistical and machine learning methods can benefit instructors across multiple disciplines. As part of a cross-university research program, we designed a systematic structural approach–based on shared instructional and assessment principles–to construct modules that are tailored to meet the needs of multiple instructional disciplines, academic levels, and pedagogies. Adopting a research-practice partnership approach, we have collectively developed twelve modules working closely with instructors and their teaching assistants for six undergraduate courses. We identified and coded primary data science concepts in the modules into five common themes: 1) data acquisition, 2) data quality issues, 3) data use and visualization, 4) advanced machine learning techniques, and 5) miscellaneous topics that may be unique to a particular discipline (e.g., how to analyze data streams collected by a special sensor). These themes were further subdivided to make it easier for instructors to contextualize the data science concepts in discipline-specific work. In this paper, we present as a case study the design and analysis of four of the modules, primarily so we can compare and contrast pairs of similar courses that were taught at different levels or at different universities. Preliminary analyses show the wide distribution of data science topics that are common among a number of environmental science and engineering courses. We identified commonalities and differences in the integration of data science instruction (through modules) into these courses. This analysis informs the development of a set of key considerations for integrating data science concepts into a variety of STEM + C courses. 
    more » « less
  3. With increasingly technology-driven workplaces and high data volumes, instructors across STEM+C disciplines are integrating more data science topics into their course learning objectives. However, instructors face significant challenges in integrating additional data science concepts into their already full course schedules. Streamlined instructional modules that are integrated with course content, and cover relevant data science topics, such as data collection, uncertainty in data, visualization, and analysis using statistical and machine learning methods can benefit instructors across multiple disciplines. As part of a cross-university research program, we designed a systematic structural approach–based on shared instructional and assessment principles–to construct modules that are tailored to meet the needs of multiple instructional disciplines, academic levels, and pedagogies. Adopting a research-practice partnership approach, we have collectively developed twelve modules working closely with instructors and their teaching assistants for six undergraduate courses. We identified and coded primary data science concepts in the modules into five common themes: 1) data acquisition, 2) data quality issues, 3) data use and visualization, 4) advanced machine learning techniques, and 5) miscellaneous topics that may be unique to a particular discipline (e.g., how to analyze data streams collected by a special sensor). These themes were further subdivided to make it easier for instructors to contextualize the data science concepts in discipline-specific work. In this paper, we present as a case study the design and analysis of four of the modules, primarily so we can compare and contrast pairs of similar courses that were taught at different levels or at different universities. Preliminary analyses show the wide distribution of data science topics that are common among a number of environmental science and engineering courses. We identified commonalities and differences in the integration of data science instruction (through modules) into these courses. This analysis informs the development of a set of key considerations for integrating data science concepts into a variety of STEM + C courses. 
    more » « less