Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This manuscript reports on the direct observation of a -delayed two-neutron emission in a study of at the ISOLDE Decay Station using neutron spectroscopy. We also report on the first measurement in decay of the long-sought excited state in , attributed to be the neutron single-particle orbital. The observation of sequential neutron emission is used to extract the relative population of the state, which was found to be much smaller than the predictions of the statistical model. The experiment was possible because of the innovative use of a neutron array with neutron discrimination and interaction tracking capabilities. This is the first study of the details of the two-neutron emission for a nucleus, which belongs to the -process path. Understanding -delayed two-neutron emission probabilities is essential to validate models used in astrophysical -process nucleosynthesis calculations. Observing two-neutron emissions in decay paves the way for new experiments to study energy and angular correlations for -delayed multineutron emitters.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Abstract Ice‐nucleating particles (INPs) play a key role in ice formation and cloud microphysics and thus significantly impact the water cycle and the climate. However, our understanding of atmospheric INPs, particularly their sources, emissions, and spatiotemporal variability, is incomplete. While the enhancement of atmospheric INP concentrations with rainfall has been previously shown, a mechanistic understanding of the process is lacking. Here, we link detailed precipitation observations with near‐surface atmospheric INP concentrations at a semiarid grassland site in Colorado. Considering the during‐precipitation air samples, INP concentrations positively correlate with cumulative rainfall kinetic energy and amount, suggesting that INP aerosolization is induced by raindrop and hailstone impact. By additionally analyzing the INP content of precipitation water, terrestrial source samples, and heat‐treated samples, we demonstrate that local plants are the most plausible source of rain‐induced INPs during a precipitation event. Should INPs aerosolized by precipitation rise to cloud height, they could influence cloud ice fraction and initiate precipitation resulting in an aerosol‐cloud‐precipitation feedback.more » « less
-
n/a (Ed.)Branching morphogenesis helps increase the efficiency of gas and liquid transport in many animal organs. Studies in several model organisms have highlighted the molecular and cellular complexity behind branching morphogenesis. To understand this complexity, computational models have been developed with the goal of identifying the “major rules” that globally explain the branching patterns. These models also guide further experimental exploration of the biological processes that execute and maintain these rules. In this paper we introduce the tracheal gills of mayfly (Ephemeroptera) larvae as a model system to study the generation of branched respiratory patterns. First, we describe the gills of the mayfly Cloeon dipterum, and quantitatively characterize the geometry of its branching trachea. We next extend this characterization to those of related species to generate the morphospace of branching patterns. Then, we show how an algorithm based on the “space colonization” concept (SCA) can generate this branching morphospace via growth towards a hypothetical attractor molecule (M). SCA differs from other branch-generating algorithms in that the geometry generated depends to a great extent on its perception of the “external” space available for branching, uses few rules and, importantly, can be easily translated into a realistic “biological patterning algorithm”. We identified a gene in the C. dipterum genome (Cd-bnl) that is orthologous to the fibroblast growth factor branchless (bnl), which stimulates growth and branching of embryonic trachea in Drosophila. In C. dipterum, this gene is expressed in the gill margins and areas of finer tracheolar branching from thicker trachea. Thus, Cd-bnl may perform the function of M in our model. Finally, we discuss this general mechanism in the context of other branching pattern-generating algorithms.more » « less
An official website of the United States government
