Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Czumaj, Artur (Ed.)Holant problems are intimately connected with quantum theory as tensor networks. We first use techniques from Holant theory to derive new and improved results for quantum entanglement theory. We discover two particular entangled states |Ψ 6 i of 6 qubits and |Ψ 8 i of 8 qubits respectively, that have extraordinary closure properties in terms of the Bell property. Then we use entanglement properties of constraint functions to derive a new complexity dichotomy for all real-valued Holant problems containing a signature of odd arity. The signatures need not be symmetric, and no auxiliary signatures are assumed.more » « less
-
Czumaj, Artur (Ed.)We study the approximation complexity of the partition function of the eight-vertex model on general 4-regular graphs. For the first time, we relate the approximability of the eight-vertex model to the complexity of approximately counting perfect matchings, a central open problem in this field. Our results extend those in [8]. In a region of the parameter space where no previous approximation complexity was known, we show that approximating the partition function is at least as hard as approximately counting perfect matchings via approximation-preserving reductions. In another region of the parameter space which is larger than the region that is previously known to admit Fully Polynomial Randomized Approximation Scheme (FPRAS), we show that computing the partition function can be reduced to counting perfect matchings (which is valid for both exact and approximate counting). Moreover, we give a complete characterization of nonnegatively weighted (not necessarily planar) 4-ary matchgates, which has been open for several years. The key ingredient of our proof is a geometric lemma. We also identify a region of the parameter space where approximating the partition function on planar 4-regular graphs is feasible but on general 4-regular graphs is equivalent to approximately counting perfect matchings. To our best knowledge, these are the first problems that exhibit this dichotomic behavior between the planar and the nonplanar settings in approximate counting.more » « less
-
Saraf, Shubhangi (Ed.)We initiate a study of the classification of approximation complexity of the eight-vertex model defined over 4-regular graphs. The eight-vertex model, together with its special case the six-vertex model, is one of the most extensively studied models in statistical physics, and can be stated as a problem of counting weighted orientations in graph theory. Our result concerns the approximability of the partition function on all 4-regular graphs, classified according to the parameters of the model. Our complexity results conform to the phase transition phenomenon from physics. We introduce a quantum decomposition of the eight-vertex model and prove a set of closure properties in various regions of the parameter space. Furthermore, we show that there are extra closure properties on 4-regular planar graphs. These regions of the parameter space are concordant with the phase transition threshold. Using these closure properties, we derive polynomial time approximation algorithms via Markov chain Monte Carlo. We also show that the eight-vertex model is NP-hard to approximate on the other side of the phase transition threshold.more » « less
-
Vidick, Thomas (Ed.)Graph homomorphism has been an important research topic since its introduction [14]. Stated in the language of binary relational structures in that paper [14], Lovász proved a fundamental theorem that the graph homomorphism function G 7→ hom(G, H) for 0-1 valued H (as the adjacency matrix of a graph) determines the isomorphism type of H. In the past 50 years various extensions have been proved by Lovász and others [15, 9, 1, 19, 17]. These extend the basic 0-1 case to admit vertex and edge weights; but always with some restrictions such as all vertex weights must be positive. In this paper we prove a general form of this theorem where H can have arbitrary vertex and edge weights. An innovative aspect is that we prove this by a surprisingly simple and unified argument. This bypasses various technical obstacles and unifies and extends all previous known versions of this theorem on graphs. The constructive proof of our theorem can be used to make various complexity dichotomy theorems for graph homomorphism effective, i.e., it provides an algorithm that for any H either outputs a P-time algorithm solving hom(·, H) or a P-time reduction from a canonical #P-hard problem to hom(·, H).more » « less
-
The complexity of graph homomorphism problems has been the subject of intense study for some years. In this paper, we prove a decidable complexity dichotomy theorem for the partition function of directed graph homomorphisms. Our theorem applies to all non-negative weighted forms of the problem: given any fixed matrix A with non-negative algebraic entries, the partition function ZA(G) of directed graph homomorphisms from any directed graph G is either tractable in polynomial time or #P-hard, depending on the matrix A. The proof of the dichotomy theorem is combinatorial, but involves the definition of an infinite family of graph homomorphism problems. The proof of its decidability on the other hand is algebraic and based on properties of polynomials.more » « less