Structure-based virtual screening utilizes molecular docking to explore and analyze ligand–macromolecule interactions, crucial for identifying and developing potential drug candidates. Although there is availability of several widely used docking programs, the accurate prediction of binding affinity and binding mode still presents challenges. In this study, we introduced a novel protocol that combines our in-house geometry optimization algorithm, the conjugate gradient with backtracking line search (CG-BS), which is capable of restraining and constraining rotatable torsional angles and other geometric parameters with a highly accurate machine learning potential, ANI-2x, renowned for its precise molecular energy predictions reassembling the wB97X/6-31G(d) model. By integrating this protocol with binding pose prediction using the Glide, we conducted additional structural optimization and potential energy prediction on 11 small molecule–macromolecule and 12 peptide–macromolecule systems. We observed that ANI-2x/CG-BS greatly improved the docking power, not only optimizing binding poses more effectively, particularly when the RMSD of the predicted binding pose by Glide exceeded around 5 Å, but also achieving a 26% higher success rate in identifying those native-like binding poses at the top rank compared to Glide docking. As for the scoring and ranking powers, ANI-2x/CG-BS demonstrated an enhanced performance in predicting and ranking hundreds or thousands of ligands over Glide docking. For example, Pearson’s and Spearman’s correlation coefficients remarkedly increased from 0.24 and 0.14 with Glide docking to 0.85 and 0.69, respectively, with the addition of ANI-2x/CG-BS for optimizing and ranking small molecules binding to the bacterial ribosomal aminoacyl-tRNA receptor. These results suggest that ANI-2x/CG-BS holds considerable potential for being integrated into virtual screening pipelines due to its enhanced docking performance.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2025
-
The “Long-COVID syndrome” has posed significant challenges due to a lack of validated therapeutic options. We developed a novel multi-step virtual screening strategy to reliably identify inhibitors against 3-chymotrypsin-like protease of SARS-CoV-2 from abundant flavonoids, which represents a promising source of antiviral and immune-boosting nutrients. We identified 57 interacting residues as contributors to the protein-ligand binding pocket. Their energy interaction profiles constituted the input features for Machine Learning (ML) models. The consensus of 25 classifiers trained using various ML algorithms attained 93.9% accuracy and a 6.4% false-positive-rate. The consensus of 10 regression models for binding energy prediction also achieved a low root-mean-square error of 1.18 kcal/mol. We screened out 120 flavonoid hits first and retained 50 drug-like hits after predefined ADMET filtering to ensure bioavailability and safety profiles. Furthermore, molecular dynamics simulations prioritized nine bioactive flavonoids as promising anti-SARS-CoV-2 agents exhibiting both high structural stability (root-mean-square deviation < 5 Å for 218 ns) and low MM/PBSA binding free energy (<−6 kcal/mol). Among them, KB-2 (PubChem-CID, 14630497) and 9-O-Methylglyceofuran (PubChem-CID, 44257401) displayed excellent binding affinity and desirable pharmacokinetic capabilities. These compounds have great potential to serve as oral nutraceuticals with therapeutic and prophylactic properties as care strategies for patients with long-COVID syndrome.
-
Malaria is a severe parasite infectious disease with high fatality. As one of the approved treatments of this disease, hydroxychloroquine (HCQ) lacks clinical administration guidelines for patients with special health conditions and co-morbidities. This may result in improper dosing for different populations and lead them to suffer from severe side effects. One of the most important toxicities of HCQ overdose is cardiotoxicity. In this study, we built and validated a physiologically based pharmacokinetic modeling (PBPK) model for HCQ. With the full-PBPK model, we predicted the pharmacokinetic (PK) profile for malaria patients without other co-morbidities under the HCQ dosing regimen suggested by Food and Drug Administration (FDA) guidance. The PK profiles for different special populations were also predicted and compared to the normal population. Moreover, we proposed a series of adjusted dosing regimens for different populations with special health conditions and predicted the concentration-time (C-T) curve of the drug plasma concentration in these populations which include the pregnant population, elderly population, RA patients, and renal impairment populations. The recommended special population-dependent dosage regimens can maintain the similar drug levels observed in the virtual healthy population under the original dosing regimen provided by FDA. Last, we developed mathematic formulas for predicting dosage based on a patient’s body measurements and two indexes of renal function (glomerular filtration rate and serum creatine level) for the pediatric and morbidly obese populations. Those formulas can facilitate personalized treatment of this disease. We hope to provide some advice to clinical practice when taking HCQ as a treatment for malaria patients with special health conditions or co-morbidities so that they will not suffer from severe side effects due to higher drug plasma concentration, especially cardiotoxicity.more » « less
-
While the COVID-19 pandemic continues to worsen, effective medicines that target the life cycle of SARS-CoV-2 are still under development. As more highly infective and dangerous variants of the coronavirus emerge, the protective power of vaccines will decrease or vanish. Thus, the development of drugs, which are free of drug resistance is direly needed. The aim of this study is to identify allosteric binding modulators from a large compound library to inhibit the binding between the Spike protein of the SARS-CoV-2 virus and human angiotensin-converting enzyme 2 (hACE2). The binding of the Spike protein to hACE2 is the first step of the infection of host cells by the coronavirus. We first built a compound library containing 77 448 antiviral compounds. Molecular docking was then conducted to preliminarily screen compounds which can potently bind to the Spike protein at two allosteric binding sites. Next, molecular dynamics simulations were performed to accurately calculate the binding affinity between the spike protein and an identified compound from docking screening and to investigate whether the compound can interfere with the binding between the Spike protein and hACE2. We successfully identified two possible drug binding sites on the Spike protein and discovered a series of antiviral compounds which can weaken the interaction between the Spike protein and hACE2 receptor through conformational changes of the key Spike residues at the Spike–hACE2 binding interface induced by the binding of the ligand at the allosteric binding site. We also applied our screening protocol to another compound library which consists of 3407 compounds for which the inhibitory activities of Spike/hACE2 binding were measured. Encouragingly, in vitro data supports that the identified compounds can inhibit the Spike–ACE2 binding. Thus, we developed a promising computational protocol to discover allosteric inhibitors of the binding of the Spike protein of SARS-CoV-2 to the hACE2 receptor, and several promising allosteric modulators were discovered.more » « less
-
Abstract Accurate estimation of solvation free energy (SFE) lays the foundation for accurate prediction of binding free energy. The Poisson‐Boltzmann (PB) or generalized Born (GB) combined with surface area (SA) continuum solvation method (PBSA and GBSA) have been widely used in SFE calculations because they can achieve good balance between accuracy and efficiency. However, the accuracy of these methods can be affected by several factors such as the charge models, polar and nonpolar SFE calculation methods and the atom radii used in the calculation. In this work, the performance of the ABCG2 (AM1‐BCC‐GAFF2) charge model as well as other two charge models, that is, RESP (Restrained Electrostatic Potential) and AM1‐BCC (Austin Model 1‐bond charge corrections), on the SFE prediction of 544 small molecules in water by PBSA/GBSA was evaluated. In order to improve the performance of the PBSA prediction based on the ABCG2 charge, we further explored the influence of atom radii on the prediction accuracy and yielded a set of atom radius parameters for more accurate SFE prediction using PBSA based on the ABCG2/GAFF2 by reproducing the thermodynamic integration (TI) calculation results. The PB radius parameters of carbon, oxygen, sulfur, phosphorus, chloride, bromide and iodine, were adjusted. New atom types,
,on ,oi ,hn1 ,hn2 , were introduced to further improve the fitting performance. Then, we tuned the parameters in the nonpolar SFE model using the experimental SFE data and the PB calculation results. By adopting the new radius parameters and new nonpolar SFE model, the root mean square error (RMSE) of the SFE calculation for the 544 molecules decreased from 2.38 to 1.05 kcal/mol. Finally, the new radius parameters were applied in the prediction of protein‐ligand binding free energies using the MM‐PBSA method. For the eight systems tested, we could observe higher correlation between the experiment data and calculation results and smaller prediction errors for the absolute binding free energies, demonstrating that our new radius parameters can improve the free energy calculation using the MM‐PBSA method.hn3