skip to main content

Search for: All records

Creators/Authors contains: "Cai, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aims. We perform a simulation using the Astrophysical Multipurpose Software Environment of the Orion Trapezium star cluster in which the evolution of the stars and the dynamics of planetary systems are taken into account. Methods. The initial conditions from earlier simulations were selected in which the size and mass distributions of the observed circumstellar disks in this cluster are satisfactorily reproduced. Four, five, or size planets per star were introduced in orbit around the 500 solar-like stars with a maximum orbital separation of 400 au. Results. Our study focuses on the production of free-floating planets. A total of 357 becomemore »unbound from a total of 2522 planets in the initial conditions of the simulation. Of these, 281 leave the cluster within the crossing timescale of the star cluster; the others remain bound to the cluster as free-floating intra-cluster planets. Five of these free-floating intra-cluster planets are captured at a later time by another star. Conclusions. The two main mechanisms by which planets are lost from their host star, ejection upon a strong encounter with another star or internal planetary scattering, drive the evaporation independent of planet mass of orbital separation at birth. The effect of small perturbations due to slow changes in the cluster potential are important for the evolution of planetary systems. In addition, the probability of a star to lose a planet is independent of the planet mass and independent of its initial orbital separation. As a consequence, the mass distribution of free-floating planets is indistinguishable from the mass distribution of planets bound to their host star.« less
  2. This study proposes a novel disinfection process by sequential application of peracetic acid (PAA) and ultra-violet light (UV), on the basis of elucidation of disinfection mechanisms under UV/PAA. Results show that hydroxyl radicals, generated by UV-activated PAA, contribute to the enhanced inactivation of Escherichia coli under UV/PAA compared to PAA alone or UV alone. Furthermore, the location of hydroxyl radical generation is a critical factor. Unlike UV/H2O2, which generates hydroxyl radicals mainly in the bulk solution, the hydroxyl radicals under UV/PAA are produced close to or inside E. coli cells, due to PAA diffusion. Therefore, hydroxyl radicals exert significantly strongermore »disinfection power under UV/PAA than under UV/H2O2 conditions. Pre-exposing E. coli to PAA in the dark followed by application of UV (i.e., a PAA-UV/PAA process) promotes diffusion of PAA to the cells and achieves excellent disinfection efficiency while saving more than half of the energy cost associated with UV compared to simultaneous application of UV and PAA. The effectiveness of this new disinfection strategy has been demonstrated not only in lab water but also in wastewater matrices.« less
  3. Peracetic acid (PAA) is a widely used disinfectant, and combined UV light with PAA (i.e. UV/PAA) can be a novel advanced oxidation process for elimination of water contaminants. This study is among the first to evaluate the photolysis of PAA under UV irradiation (254 nm) and degradation of pharmaceuticals by UV/PAA. PAA exhibited high quantum yields (Φ254nm = 1.20 and 2.09 mol·Einstein−1 for the neutral (PAA0) and anionic (PAA-) species, respectively) and also showed scavenging effects on hydroxyl radicals (k•OH/PAA0 = (9.33±0.3)×108 M−1·s−1 and k•OH/PAA- = (9.97±2.3)×109 M−1·s−1). The pharmaceuticals were persistent with PAA alone but degraded rapidly by UV/PAA.more »The contributions of direct photolysis, hydroxyl radicals, and other radicals to pharmaceutical degradation under UV/PAA were systematically evaluated. Results revealed that •OH was the primary radical responsible for the degradation of carbamazepine and ibuprofen by UV/PAA, whereas CH3C(=O)O• and/or CH3C(=O)O2• contributed significantly to the degradation of naproxen and 2-naphthoxyacetic acid by UV/PAA in addition to •OH. The carbon-centered radicals generated from UV/PAA showed strong reactivity to oxidize certain naphthyl compounds. The new knowledge obtained in this study will facilitate further research and development of UV/PAA as a new degradation strategy for water contaminants.« less
  4. Peracetic acid (PAA) is a disinfection oxidant used in many industries including wastewater treatment. β-Lactams, a group of widely prescribed antibiotics, are frequently detected in wastewater effluent and in the natural aquatic environment. The reaction kinetics and transformation of seven β-lactams (cefalexin (CFX), cefadroxil (CFR), cefapirin (CFP), cephalothin (CFT), ampicillin (AMP), amoxicillin (AMX) and penicillin G (PG)) toward PAA were investigated to elucidate the behavior of β-lactams during PAA oxidation processes. The reaction follows second-order kinetics and is much faster at pH 5 and 7 than at pH 9 due to speciation of PAA. Reactivity to PAA follows the ordermore »of CFR ~ CFX > AMP ~ AMX > CFT ~ CFP ~ PG and is related to β-lactam’s nucleophilicity. The thioether sulfur of β-lactams is attacked by PAA to generate sulfoxide products. Presence of the phenylglycinyl amino group on β-lactams can significantly influence electron distribution and the highest occupied molecular orbital (HOMO) location and energy in ways that enhance the reactivity to PAA. Reaction rate constants obtained in clean water matrix can be used to accurately model the decay of β-lactams by PAA in surface water matrix and only slightly overestimate the decay in wastewater matrix. Results of this study indicate that the oxidative transformation of β-lactams by PAA can be expected under appropriate wastewater treatment conditions.« less
  5. Free, publicly-accessible full text available September 1, 2022
  6. Abstract The coherent photoproduction of $$\mathrm{J}/\psi $$ J / ψ and $${\uppsi '}$$ ψ ′ mesons was measured in ultra-peripheral Pb–Pb collisions at a center-of-mass energy $$\sqrt{s_{\mathrm {NN}}}~=~5.02$$ s NN = 5.02  TeV  with the ALICE detector. Charmonia are detected in the central rapidity region for events where the hadronic interactions are strongly suppressed. The $$\mathrm{J}/\psi $$ J / ψ is reconstructed using the dilepton ( $$l^{+} l^{-}$$ l + l - ) and proton–antiproton decay channels, while for the $${\uppsi '}$$ ψ ′   the dilepton and the $$l^{+} l^{-} \pi ^{+} \pi ^{-}$$ l + l - πmore »+ π - decay channels are studied. The analysis is based on an event sample corresponding to an integrated luminosity of about 233 $$\mu {\mathrm{b}}^{-1}$$ μ b - 1 . The results are compared with theoretical models for coherent $$\mathrm{J}/\psi $$ J / ψ and $${\uppsi '}$$ ψ ′ photoproduction. The coherent cross section is found to be in a good agreement with models incorporating moderate nuclear gluon shadowing of about 0.64 at a Bjorken- x of around $$6\times 10^{-4}$$ 6 × 10 - 4 , such as the EPS09 parametrization, however none of the models is able to fully describe the rapidity dependence of the coherent $$\mathrm{J}/\psi $$ J / ψ cross section including ALICE measurements at forward rapidity. The ratio of $${\uppsi '}$$ ψ ′ to $$\mathrm{J}/\psi $$ J / ψ coherent photoproduction cross sections was also measured and found to be consistent with the one for photoproduction off protons.« less
    Free, publicly-accessible full text available August 1, 2022
  7. Abstract The production of $$\phi $$ ϕ mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region $$2.5< y < 4$$ 2.5 < y < 4 . Measurements of the differential cross section $$\mathrm{d}^2\sigma /\mathrm{d}y \mathrm{d}p_{\mathrm {T}}$$ d 2 σ / d y d p T are presented as a function of the transverse momentum ( $$p_{\mathrm {T}}$$ p T ) at the center-of-mass energies $$\sqrt{s}=5.02$$ s = 5.02 , 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at $$\sqrt{s}=5.02$$more »s = 5.02 and 13 TeV are also studied in several rapidity intervals as a function of $$p_{\mathrm {T}}$$ p T , and as a function of rapidity in three $$p_{\mathrm {T}}$$ p T intervals. A hardening of the $$p_{\mathrm {T}}$$ p T -differential cross section with the collision energy is observed, while, for a given energy, $$p_{\mathrm {T}}$$ p T spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing $$p_{\mathrm {T}}$$ p T . The new results, complementing the published measurements at $$\sqrt{s}=2.76$$ s = 2.76 and 7 TeV, allow one to establish the energy dependence of $$\phi $$ ϕ meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with $$p_{\mathrm {T}}$$ p T and rapidity at all the energies.« less
    Free, publicly-accessible full text available August 1, 2022
  8. Abstract The multiplicity dependence of the pseudorapidity density of charged particles in proton–proton (pp) collisions at centre-of-mass energies $$\sqrt{s}~=~5.02$$ s = 5.02 , 7 and 13 TeV measured by ALICE is reported. The analysis relies on track segments measured in the midrapidity range ( $$|\eta | < 1.5$$ | η | < 1.5 ). Results are presented for inelastic events having at least one charged particle produced in the pseudorapidity interval $$|\eta |<1$$ | η | < 1 . The multiplicity dependence of the pseudorapidity density of charged particles is measured with mid- and forward rapidity multiplicity estimators, the lattermore »being less affected by autocorrelations. A detailed comparison with predictions from the PYTHIA 8 and EPOS LHC event generators is also presented. The results can be used to constrain models for particle production as a function of multiplicity in pp collisions.« less