skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Cai, Mingchao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study numerical algorithms for solving Biot’s model. Based on a three-field reformulation, we present some algorithms that are inspired by the work of Chaabane et al. (Comput MathAppl 75(7):2328–2337) and Lee (Unconditionally stable second order convergent partitioned methods for multiple-network poroelasticity arXiv:1901.06078, 2019) for decoupling the computation of Biot’s model. A new theoretical framework is developed to analyze the algorithms. Considering a uniform temporal discretization, these algorithms solve the coupled model on the first time level. On the remaining time levels, one algorithm solves a reaction-diffusion subproblem first and then solves a generalized Stokes subproblem.Another algorithm reverses the order of solving the two subproblems. Our algorithms manage to decouple the numerical computation of the coupled system while retaining the convergence properties of the original coupled algorithm. Theoretical analysis is conducted to show that these algorithms are unconditionally stable and optimally convergent.Numerical experiments are also carried out to validate the theoretical analysis and demonstrate the advantages of the proposed algorithms. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. This paper is concerned with numerical algorithms for Biot model. By introducing an intermediate variable, the classical 2-field Biot model is written into a 3-field formulation. Based on such a 3-field formulation, we propose a coupled algorithm, some time-extrapolation based decoupled algorithms, and an iterative decoupled algorithm. Our focus is the analysis of the iterative decoupled algorithm. It is shown that the convergence of the iterative decoupled algorithm requires no extra assumptions on physical parameters or stabilization parameters. Numerical experiments are provided to demonstrate the accuracy and efficiency of the proposed method. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. In this paper, we develop parameter-robust numerical algorithms for Biot model and apply the algorithms in brain edema simulations. By introducing an intermediate variable, we derive a multiphysics reformulation of the Biot model. Based on the reformulation, the Biot model is viewed as a generalized Stokes subproblem combining with a reaction–diffusion subproblem. Solving the two subproblems together or separately leads to a coupled or a decoupled algorithm. We conduct extensive numerical experiments to show that the two algorithms are robust with respect to the key physical parameters. The algorithms are applied to study the brain swelling caused by abnormal accumulation of cerebrospinal fluid in injured areas. The effects of the key physical parameters on brain swelling are carefully investigated. It is observed that the permeability has the biggest influence on intracranial pressure (ICP) and tissue deformation; the Young’s modulus and the Poisson ratio do not affect the maximum value of ICP too much but have big influence on the tissue deformation and the developing speed of brain swelling. 
    more » « less
  4. An H(div)-conforming finite element method for the Biot’s consolidation mo- del is developed, with displacements and fluid velocity approximated by elements from BDM_k space. The use of H(div)-conforming elements for flow variables ensures the local mass conservation. In the H(div)-conforming approximation of displacement, the tan- gential components are discretised in the interior penalty discontinuous Galerkin frame- work,and the normal components across the element interfaces are continuous. Having introduced a spatial discretisation, we develop a semi-discrete scheme and a fully dis- crete scheme,prove their unique solvability and establish optimal error estimates for each variable. 
    more » « less
  5. In this paper, we develop a Finite Volume solver for a 3D incompressible Oldroyd-B model with infinity relaxation time. The Finite Volume solver is implemented by using a lead- ing open-source computational mechanics software OpenFOAM. We have imposed the di- vergence free condition as a constraint on the momentum equation to derive a pressure equation and a predictor-corrector procedure is applied when solving the velocity field. Both stability analysis and numerical experiments are given to show the robustness and accuracy of our algorithm. Two concrete examples on a cubical domain and a dumbbell are computed and illustrated. 
    more » « less
  6. In this paper, we study the normal mode solutions of 3D incompressible viscous fluid flow models. The obtained theoretical results are then applied to analyze several time-stepping schemes for the numerical solutions of the 3D incompressible fluid flow models. 
    more » « less