In coastal regions and marginal bodies of water, the increase in partial pressure of carbon dioxide (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract p CO2) in many instances is greater than that of the open ocean due to terrestrial (river, estuarine, and wetland) influences, decreasing buffering capacity and/or increasing water temperatures. Coastal oceans receive freshwater from rivers and groundwater as well as terrestrial-derived organic matter, both of which have a direct influence on coastal carbonate chemistry. The objective of this research is to determine if coastal marshes in Georgia, USA, may be “hot-spots” for acidification due to enhanced inorganic carbon sources and if there is terrestrial influence on offshore acidification in the South Atlantic Bight (SAB). The results of this study show that dissolved inorganic carbon (DIC) and total alkalinity (TA) are elevated in the marshes compared to predictions from conservative mixing of the freshwater and oceanic end-members, with accompanying pH around 7.2 to 7.6 within the marshes and aragonite saturation states (ΩAr) <1. In the marshes, there is a strong relationship between the terrestrial/estuarine-derived organic and inorganic carbon and acidification. Comparisons of pH, TA, and DIC to terrestrial organic material markers, however, show that there is little influence of terrestrial-derived organic matter on shelf acidification during thismore » -
Free, publicly-accessible full text available April 1, 2024
-
The western Arctic Ocean is rapidly acidifying due to sea ice loss.Free, publicly-accessible full text available September 30, 2023
-
Aquatic ecosystems are increasingly threatened by multiple human-induced stressors associated with climate and anthropogenic changes, including warming, nutrient pollution, harmful algal blooms, hypoxia, and changes in CO 2 and pH. These stressors may affect systems additively and synergistically but may also counteract each other. The resultant ecosystem changes occur rapidly, affecting both biotic and abiotic components and their interactions. Moreover, the complexity of interactions increases as one ascends the food web due to differing sensitivities and exposures among life stages and associated species interactions, such as competition and predation. There is also a need to further understand nontraditional food web interactions, such as mixotrophy, which is the ability to combine photosynthesis and feeding by a single organism. The complexity of these interactions and nontraditional food webs presents challenges to ecosystem modeling and management. Developing ecological models to understand multistressor effects is further challenged by the lack of sufficient data on the effects of interactive stressors across different trophic levels and the substantial variability in climate changes on regional scales. To obtain data on a broad suite of interactions, a nested set of experiments can be employed. Modular, coupled, multitrophic level models will provide the flexibility to explore the additive, amplified,more »
-
The United States Department of Energy (DOE)’s Ocean Margins Program (OMP) cruise EN279 in March 1996 provides an important baseline for assessing long-term changes in the carbon cycle and biogeochemistry in the Mid-Atlantic Bight (MAB) as climate and anthropogenic changes have been substantial in this region over the past two decades. The distributions of O 2 , nutrients, and marine inorganic carbon system parameters are influenced by coastal currents, temperature gradients, and biological production and respiration. On the cross-shelf direction, pH decreases seaward, but carbonate saturation state (Ω Arag ) does not exhibit a clear trend. In contrast, Ω Arag increases from north to south, while pH has no clear spatial patterns in the along-shelf direction. In order to distinguish between the effects of physical mixing of various water masses and those of biological activities on the marine inorganic carbon system, we use the potential temperature-salinity diagram to identify water masses, and differences between observations and theoretical mixing concentrations to measure the non-conservative (primarily biological) effects. Our analysis clearly shows the degree to which ocean margin pH and Ω Arag are regulated by biological activities in addition to water mass mixing, gas exchange, and temperature. The correlations among anomalies inmore »