skip to main content


Search for: All records

Creators/Authors contains: "Cai, Xun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Association for the Sciences of Limnology and Oceanography (ASLO) sponsors Eco-DAS, which is now in its 30th year. The program aims to unite aquatic scientists, develop diverse collaborations, and provide professional development training opportunities with guests from federal agencies, nonprofits, academia, tribal groups, and other workplaces (a previous iteration is summarized in Ghosh et al. 2022). Eco-DAS XV was one of the largest and most nationally diverse cohorts, including 37 early career aquatic scientists, 15 of whom were originally from 9 different countries outside the United States (Fig. 2). As the first cohort to meet in-person since the COVID-19 pandemic, Eco-DAS participants convened from 5 to 11 March 2023 to expand professional networks, create shared projects, and discuss areas of priority for the aquatic sciences. During the weeklong meeting, participants developed 46 proposal ideas, 16 of which will be further developed into projects and peer-reviewed manuscripts. 
    more » « less
    Free, publicly-accessible full text available July 3, 2024
  2. Abstract

    A three‐dimensional unstructured‐grid hydrodynamic and water quality model (Semi‐implicit Cross‐scale Hydroscience Intergrated System Model‐Integrated Compartment Model) is applied successfully for Chesapeake Bay. The model is validated with observations of salinity, chlorophyll‐a, dissolved oxygen, nutrients, and phytoplankton productions from the year 1991 to 1995 for the mainstem and some major tributaries, based on multiple model skill scores. Model experiments are conducted to test the importance of having (1) an accurate representation of bathymetry to correctly predict hypoxia and other processes and (2) a high‐resolution model grid for tributaries to correctly simulate water quality variables. Comparison with the model experiment results with bathymetry smoothing indicates that bathymetry smoothing, as commonly used for many systems, changes the stratification and lateral circulation pattern, resulting in more salt intrusion into shallow water regions, and an increase in the freshwater age. Consequently, a model with bathymetry smoothing can lead to an unrealistic prediction of the distribution of hypoxia and phytoplankton production. Local grid refinement shows significant improvement of model simulations on local stratification and water quality variables. Overall, the use of high‐resolution unstructured grid model leads to a faithful representation of the complex geometry, and thus a seamless cross‐scale capability for simulating water quality processes in the Bay including tributaries and tidal creeks.

     
    more » « less