skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Cai, Zhongzheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We have prepared a new series of nickel phosphine phosphonate ester complexes that feature two metal-chelating polyethylene glycol (PEG) side arms. Metal binding and reactivity studies in polar solvents showed that they readily coordinate external cations, including alkali (Li + , Na + , K + ), alkaline (Mg 2+ , Ca 2+ ), transition (Sc 3+ , Co 2+ , Zn 2+ ), post-transition (Ga 3+ ), and lanthanide (La 3+ ) metals. Although olefin polymerization reactions are typically performed in non-polar solvents, which cannot solubilize +2 and +3 metal cations, we discovered that our nickel catalysts could promote ethylene polymerization in neat tetrahydrofuran. This advance allowed us, for the first time, to systematically investigate the effects of a wide range of M + , M 2+ , and M 3+ ions on the reactivity of nickel olefin polymerization catalysts. In ethylene homopolymerization, the addition of Co(OTf) 2 to our nickel-PEG complexes provided the largest boost in activity (up to 11-fold, 2.7 × 10 6 g mol −1 h −1 ) compared to that in the absence of external salts. The catalyst enhancing effects of secondary metals were also observed in studies of ethylene and polar olefin ( e.g. , propyl vinyl ether, allyl butyl ether, methyl-10-undecenoate, and 5-acetoxy-1-pentene) copolymerization. Notably, combining either Co 2+ or Zn 2+ with our nickel complexes increased the rates of polymerization in the presence of propyl vinyl ether by about 5.0- and 2.4-fold, respectively. Although further studies are needed to elucidate the structural and mechanistic roles of the secondary metals, this work is an important advance toward the development of cation-switchable polymerization catalysts. 
    more » « less
  2. Abstract

    A novel metal‐organic framework (MOF) containing one‐dimensional, Fe2+chains bridged by dipyrazolate linkers andN,N‐dimethylformamide (DMF) ligands has been synthesized. The unusual chain‐type metal nodes feature accessible coordination sites on adjacent metal centers, resulting in motifs that are reminiscent of the active sites in non‐heme diiron enzymes. The MOF facilitates direct reduction of nitric oxide (NO), producing nearly quantitative yields of nitrous oxide (N2O) and emulating the reactivity of flavodiiron nitric oxide reductases (FNORs). The ferrous form of the MOF can be regenerated via a synthetic cycle involving reduction with cobaltocene (CoCp2) followed by reaction with trimethylsilyl triflate (TMSOTf).

     
    more » « less
  3. Abstract

    A novel metal‐organic framework (MOF) containing one‐dimensional, Fe2+chains bridged by dipyrazolate linkers andN,N‐dimethylformamide (DMF) ligands has been synthesized. The unusual chain‐type metal nodes feature accessible coordination sites on adjacent metal centers, resulting in motifs that are reminiscent of the active sites in non‐heme diiron enzymes. The MOF facilitates direct reduction of nitric oxide (NO), producing nearly quantitative yields of nitrous oxide (N2O) and emulating the reactivity of flavodiiron nitric oxide reductases (FNORs). The ferrous form of the MOF can be regenerated via a synthetic cycle involving reduction with cobaltocene (CoCp2) followed by reaction with trimethylsilyl triflate (TMSOTf).

     
    more » « less