skip to main content

Search for: All records

Creators/Authors contains: "Caicedo, J. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Smart Structures Technologies (SST) is receiving considerable attention as the demands for high performance in structural systems increase. Although both the academic and professional engineering worlds are seeking ways to utilize SST, there is a significant gap between engineering science and engineering practice. To bridge the gap and facilitate the research infusion, San Francisco State University (SFSU) and the University of South Carolina (UofSC) collaborated with industry partners to establish a Research Experiences for Undergraduates (REU) Site program, which provides undergraduate students a unique opportunity to experience research in both academic and professional settings through cooperative research projects. The objectives of the program were to: 1) provide participants a unique and exciting summer research experience in both academic and industrial environments; 2) prepare students to become the catalysts to help close the gap between engineering science (academia) and engineering practice (industry); and 3) motivate the participants, especially those from underrepresented minority groups (URMs), not only to complete their undergraduate degrees but also to pursue advanced degrees and/or careers in engineering. 
    more » « less
  2. As one of the serviceability limit states of structural design, excessive vibration has attracted more attention in recent years, with the design trend moving toward lighter and more slender structures. Footfall vibration contains high uncertainties in nature, with significant variations in walker weight, walking speeds, and dynamic load factor. Since conservative designs can often lead to significant cost premiums, this study focuses on the stochastic assessment of footfall vibration of on a composite steel floor to better understand the variation in performance of various design factors and better inform the ultimate decision-makers. To close the knowledge gap between academia and industry in this area, San Francisco State University and the University of South Carolina partnered with Arup through an NSF-funded Research Experience for Undergraduates (REU) program. A composite steel structure was modeled to resemble a typical office bay. The model was developed and analyzed in Oasys GSA. Monte Carlo simulation was used to quantify the probability of exceeding certain common vibration criteria. The results of this study would provide actionable guidance to stakeholders to weigh the benefits and costs between performance targets. 
    more » « less