skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Calderon, Jasmynn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IntroductionIn the developing brain, neurons extend an axonal process through a complex and changing environment to form synaptic connections with the correct targets in response to extracellular cues. Microtubule and actin filaments provide mechanical support and drive axon growth in the correct direction. The axonal cytoskeleton responds to extracellular guidance cues. Netrin-1 is a multifunctional guidance cue that can induce alternate responses based on the bound receptor. The mechanism by which actin responds to Netrin-1 is well described. However, how Netrin-1 influences the microtubule cytoskeleton is less understood. Appropriate microtubule function is required for axon pathfinding, as mutations in tubulin phenocopy axon crossing defects of Netrin-1 and DCC mutants. Microtubule stabilization is required for attractive guidance cue response. The C-terminal tails of microtubules can be post-translationally modified. Post-translational modifications (PTMs) help control the microtubule cytoskeleton. MethodsWe measured polyglutamylation in cultured primary mouse cortical neurons before and after Netrin-1 stimulation. We used immunohistochemistry to measure how Netrin-1 stimulation alters microtubule-associated protein localization. Next, we manipulated TTLL1 to determine if Netrin-1-induced axon growth and MAP localization depend on polyglutamylation levels. ResultsIn this study, we investigated if Netrin-1 signaling alters microtubule PTMs in the axon. We found that microtubule polyglutamylation increases after Netrin-1 stimulation. This change in polyglutamylation is necessary for Netrin-1-induced axonal growth rate increases. We next determined that MAP1B and DCX localization changes in response to Netrin-1. These proteins can both stabilize the microtubule cytoskeleton and may be responsible for Netrin-1-induced growth response in neurons. The changes in DCX and MAP1B depend on TTLL1, a protein responsible for microtubule polyglutamylation. 
    more » « less
    Free, publicly-accessible full text available October 14, 2025