Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2025
-
ABSTRACT Stellar streams are sensitive probes of the Galactic potential. The likelihood of a stream model given stream data is often assessed using simulations. However, comparing to simulations is challenging when even the stream paths can be hard to quantify. Here we present a novel application of self-organizing maps and first-order Kalman filters to reconstruct a stream’s path, propagating measurement errors and data sparsity into the stream path uncertainty. The technique is Galactic-model independent, non-parametric, and works on phase-wrapped streams. With this technique, we can uniformly analyse and compare data with simulations, enabling both comparison of simulation techniques and ensemble analysis with stream tracks of many stellar streams. Our method is implemented in the public Python package TrackStream, available at https://github.com/nstarman/trackstream.more » « less
-
Abstract We present a standalone Matlab software platform complete with visualization for the reconstruction of the neural activity in the brain from MEG or EEG data. The underlying inversion combines hierarchical Bayesian models and Krylov subspace iterative least squares solvers. The Bayesian framework of the underlying inversion algorithm allows to account for anatomical information and possible a priori belief about the focality of the reconstruction. The computational efficiency makes the software suitable for the reconstruction of lengthy time series on standard computing equipment. The algorithm requires minimal user provided input parameters, although the user can express the desired focality and accuracy of the solution. The code has been designed so as to favor the parallelization performed automatically by Matlab, according to the resources of the host computer. We demonstrate the flexibility of the platform by reconstructing activity patterns with supports of different sizes from MEG and EEG data. Moreover, we show that the software reconstructs well activity patches located either in the subcortical brain structures or on the cortex. The inverse solver and visualization modules can be used either individually or in combination. We also provide a version of the inverse solver that can be used within Brainstorm toolbox. All the software is available online by Github, including the Brainstorm plugin, with accompanying documentation and test data.more » « less
-
null (Ed.)Understanding the dynamics of the spread of COVID-19 between connected communities is fundamental in planning appropriate mitigation measures. To that end, we propose and analyze a novel metapopulation network model, particularly suitable for modeling commuter traffic patterns, that takes into account the connectivity between a heterogeneous set of communities, each with its own infection dynamics. In the novel metapopulation model that we propose here, transport schemes developed in optimal transport theory provide an efficient and easily implementable way of describing the temporary population redistribution due to traffic, such as the daily commuter traffic between work and residence. Locally, infection dynamics in individual communities are described in terms of a susceptible-exposed-infected-recovered (SEIR) compartment model, modified to account for the specific features of COVID-19, most notably its spread by asymptomatic and presymptomatic infected individuals. The mathematical foundation of our metapopulation network model is akin to a transport scheme between two population distributions, namely the residential distribution and the workplace distribution, whose interface can be inferred from commuter mobility data made available by the US Census Bureau. We use the proposed metapopulation model to test the dynamics of the spread of COVID-19 on two networks, a smaller one comprising 7 counties in the Greater Cleveland area in Ohio, and a larger one consisting of 74 counties in the Pittsburgh–Cleveland–Detroit corridor following the Lake Erie’s American coastline. The model simulations indicate that densely populated regions effectively act as amplifiers of the infection for the surrounding, less densely populated areas, in agreement with the pattern of infections observed in the course of the COVID-19 pandemic. Computed examples show that the model can be used also to test different mitigation strategies, including one based on state-level travel restrictions, another on county level triggered social distancing, as well as a combination of the two.more » « less
-
Abstract Meditation practices have been claimed to have a positive effect on the regulation of mood and emotions for quite some time by practitioners, and in recent times there has been a sustained effort to provide a more precise description of the influence of meditation on the human brain. Longitudinal studies have reported morphological changes in cortical thickness and volume in selected brain regions due to meditation practice, which is interpreted as an evidence its effectiveness beyond the subjective self reporting. Using magnetoencephalography (MEG) or electroencephalography to quantify the changes in brain activity during meditation practice represents a challenge, as no clear hypothesis about the spatial or temporal pattern of such changes is available to date. In this article we consider MEG data collected during meditation sessions of experienced Buddhist monks practicing focused attention (Samatha) and open monitoring (Vipassana) meditation, contrasted by resting state with eyes closed. The MEG data are first mapped to time series of brain activity averaged over brain regions corresponding to a standard Destrieux brain atlas. Next, by bootstrapping and spectral analysis, the data are mapped to matrices representing random samples of power spectral densities in
,$$\alpha$$ ,$$\beta$$ , and$$\gamma$$ frequency bands. We use linear discriminant analysis to demonstrate that the samples corresponding to different meditative or resting states contain enough fingerprints of the brain state to allow a separation between different states, and we identify the brain regions that appear to contribute to the separation. Our findings suggest that the cingulate cortex, insular cortex and some of the internal structures, most notably the accumbens, the caudate and the putamen nuclei, the thalamus and the amygdalae stand out as separating regions, which seems to correlate well with earlier findings based on longitudinal studies.$$\theta$$