Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 15, 2025
-
Free, publicly-accessible full text available May 9, 2025
-
Capture and Detection of Fentanyl with Thiolated Cucurbit[7]uril Macrocycles on Silver NanoparticlesFree, publicly-accessible full text available May 10, 2025
-
The discovery of N-heterocyclic carbenes (NHCs) revolutionized organometallic chemistry due to their strong metal–ligand bonds. These strong bonds also lend enhanced stability to gold surfaces and nanoparticles. This stability and high degree of synthetic tunability has allowed NHCs to supplant thiols as the ligand of choice when functionalizing gold surfaces. This review article summarizes the basic science and applications of NHCs on gold surfaces and gold nanoparticles. Additionally, scientific questions that are unique to gold–NHC systems are discussed, such as the NHC adatom binding motif and the NHC surface mobility. Finally, new applications for NHCs on gold are covered with particular attention to biomedicine, catalysis, and microelectronics.more » « less
-
Abstract N‐heterocyclic carbene (NHC) monolayers are transforming electrocatalysis and biosensor design via their increased performance and stability. Despite their increasing use in electrochemical systems, the integrity of the NHC monolayer during voltage perturbations remains largely unknown. Herein, we deploy surface‐enhanced Raman spectroscopy (SERS) to measure the stability of two model NHCs on gold in ambient conditions as a function of applied potential and under continuous voltammetric interrogation. Our results illustrate that NHC monolayers exhibit electrochemical stability over a wide voltage window (−1 V to 0.5 V vs Ag|AgCl), but they are found to degrade at strongly reducing (< −1 V) or oxidizing (>0.5 V) potentials. We also address NHC monolayer stability under continuous voltammetric interrogation between 0.2 V and −0.5 V, a commonly used voltage window for sensing, showing they are stable for up to 43 hours. However, we additionally find that modifications of the backbone NHC structure can lead to significantly shorter operational lifetimes. While these results highlight the potential of NHC architectures for electrode functionalization, they also reveal potential pitfalls that have not been fully appreciated in electrochemical applications of NHCs.
-
The exceptional stability of N-heterocyclic carbene (NHC) monolayers on gold surfaces and nanoparticles (AuNPs) is enabling new and diverse applications from catalysis to biomedicine. Our understanding of NHC reactivity at surfaces; however, is quite nascent when compared to the long and rich history of NHC ligands in organometallic chemistry. In this work, well-established transmetalation reactions, previously developed for NHC transfer in homogeneous organometallic systems, are explored to determine how they can be used to create carbene functionalized gold surfaces. Two classes of NHCs, based on imidazole and benzimidazole scaffolds, were tested. The resulting AuNP surfaces were analyzed using X-ray photoelectron spectroscopy (XPS), laser desorption ionization mass spectrometry (LDI-MS), and surface-enhanced Raman spectroscopy (SERS). Reaction of either a Au( i ) or Ag( i ) isopropyl benzimidazole NHC complex with citrate-capped AuNPs yields, in both cases, a chemisorbed NHC that is bound through a Au adatom. Theoretical calculations additionally illustrate that binding through the Au adatom is favored by more than 10 kcal mol −1 , in good agreement with experiments. Surprisingly, reaction of Au( i ), Ag( i ), and Cu( i ) diisopropylphenyl imidazole NHCs do not follow the same pattern. The Cu complex undergoes transmetalation with very little deposition of Cu; whereas, unexpectedly, the Ag complex foregoes transmetalation and instead adducts to the AuNP with retention of the Ag–C bond. Theoretical calculations illustrate that the imidazole ligand affords significant dispersion interactions with the gold surface, which may stabilize binding through the Ag adatom motif, despite its less favorable bonding energies. Taken together these results suggest a unique ability to tune the reactivity by changing the carbene structure and raise critical questions about how established transmetalation reactions in organometallic chemistry can be applied to form NHC functionalized surfaces.more » « less