Upcoming galaxy surveys will allow us to probe the growth of the cosmic large-scale structure with improved sensitivity compared to current missions, and will also map larger areas of the sky. This means that in addition to the increased precision in observations, future surveys will also access the ultralarge-scale regime, where commonly neglected effects such as lensing, redshift-space distortions, and relativistic corrections become important for calculating correlation functions of galaxy positions. At the same time, several approximations usually made in these calculations such as the Limber approximation break down at those scales. The need to abandon these approximations and simplifying assumptions at large scales creates severe issues for parameter estimation methods. On the one hand, exact calculations of theoretical angular power spectra become computationally expensive, and the need to perform them thousands of times to reconstruct posterior probability distributions for cosmological parameters makes the approach unfeasible. On the other hand, neglecting relativistic effects and relying on approximations may significantly bias the estimates of cosmological parameters. In this work, we quantify this bias and investigate how an incomplete modelling of various effects on ultralarge scales could lead to false detections of new physics beyond the standard ΛCDM model. Furthermore, we propose a simple debiasing method that allows us to recover true cosmologies without running the full parameter estimation pipeline with exact theoretical calculations. This method can therefore provide a fast way of obtaining accurate values of cosmological parameters and estimates of exact posterior probability distributions from ultralarge-scale observations.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
null (Ed.)ABSTRACT We describe the first results on weak gravitational lensing from the SuperCLASS survey: the first survey specifically designed to measure the weak lensing effect in radio-wavelength data, both alone and in cross-correlation with optical data. We analyse $1.53 \, \mathrm{deg}^2$ of optical data from the Subaru telescope and $0.26 \, \mathrm{deg}^2$ of radio data from the e-MERLIN and VLA telescopes (the DR1 data set). Using standard methodologies on the optical data only we make a significant (10σ) detection of the weak lensing signal (a shear power spectrum) due to the massive supercluster of galaxies in the targeted region. For the radio data we develop a new method to measure the shapes of galaxies from the interferometric data, and we construct a simulation pipeline to validate this method. We then apply this analysis to our radio observations, treating the e-MERLIN and VLA data independently. We achieve source densities of $0.5 \,$ arcmin−2 in the VLA data and $0.06 \,$ arcmin−2 in the e-MERLIN data, numbers which prove too small to allow a detection of a weak lensing signal in either the radio data alone or in cross-correlation with the optical data. Finally, we show preliminary results from a visibility-plane combination of the data from e-MERLIN and VLA which will be used for the forthcoming full SuperCLASS data release. This approach to data combination is expected to enhance both the number density of weak lensing sources available, and the fidelity with which their shapes can be measured.more » « less
-
null (Ed.)ABSTRACT The SuperCLuster Assisted Shear Survey (SuperCLASS) is a legacy programme using the e-MERLIN interferometric array. The aim is to observe the sky at L-band (1.4 GHz) to a r.m.s. of $7\, \mu {\rm Jy}\,$beam−1 over an area of $\sim 1\, {\rm deg}^2$ centred on the Abell 981 supercluster. The main scientific objectives of the project are: (i) to detect the effects of weak lensing in the radio in preparation for similar measurements with the Square Kilometre Array (SKA); (ii) an extinction free census of star formation and AGN activity out to z ∼ 1. In this paper we give an overview of the project including the science goals and multiwavelength coverage before presenting the first data release. We have analysed around 400 h of e-MERLIN data allowing us to create a Data Release 1 (DR1) mosaic of $\sim 0.26\, {\rm deg}^2$ to the full depth. These observations have been supplemented with complementary radio observations from the Karl G. Jansky Very Large Array (VLA) and optical/near infrared observations taken with the Subaru, Canada-France-Hawaii, and Spitzer Telescopes. The main data product is a catalogue of 887 sources detected by the VLA, of which 395 are detected by e-MERLIN and 197 of these are resolved. We have investigated the size, flux, and spectral index properties of these sources finding them compatible with previous studies. Preliminary photometric redshifts, and an assessment of galaxy shapes measured in the radio data, combined with a radio-optical cross-correlation technique probing cosmic shear in a supercluster environment, are presented in companion papers.more » « less