skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Camera, Stefano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A major goal of cosmology is to understand the nature of the field(s) which drove primordial Inflation. Through future observations, the statistics of large-scale structure will allow us to probe primordial non-Gaussianity of thecurvature perturbation at the end of Inflation. We show how a new correlation statistic can significantly improve these constraints over conventional methods. Next-generation radio telescope arrays are under construction which will map the density field of neutral hydrogen to high redshifts. These telescopes can operate as an interferometer, able to probe small scales, or as a collection of single dishes, combining signals to map the large scales. We show how to fuse these operating modes in order to measure the squeezed bispectrum with higher precision and greater economy. This leads to constraints on primordial non-Gaussianity that will improve on measurements by Planck,and out-perform other surveys such as Euclid. We forecast that σ(fNLloc)∼ 3, achieved by using a small subset, 𝒪(102- 103), of the total number of accessible triangles. The proposed method identifies a low instrumental noise, systematic-free scale regime, enabling clean squeezed bispectrum measurements. This provides a pristine window into local primordial non-Gaussianity, allowing tight constraints not only on primordial non-Gaussianity, but on any observable that peaks in squeezed configurations. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Aims.We cross-correlated galaxies from the LOw-Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) second data release (DR2) radio source with the extended Baryon Oscillation Spectroscopic Survey (eBOSS) luminous red galaxy (LRG) sample to extract the baryon acoustic oscillation (BAO) signal and constrain the linear clustering bias of radio sources in LoTSS DR2. Methods.In the LoTSS DR2 catalogue, employing a flux density limit of 1.5 mJy at the central LoTSS frequency of 144 MHz and a signal-to-noise ratio (S/N) of 7.5, additionally considering eBOSS LRGs with redshifts between 0.6 and 1, we measured both the angular LoTSS-eBOSS cross-power spectrum and the angular eBOSS auto-power spectrum. These measurements were performed across various eBOSS redshift tomographic bins with a width of Δz = 0.06. By marginalising over the broadband shape of the angular power spectra, we searched for a BAO signal in cross-correlation with radio galaxies, and determine the linear clustering bias of LoTSS radio sources for a constant-bias and an evolving-bias model. Results.Using the cross-correlation, we measured the isotropic BAO dilation parameter asα = 1.01 ± 0.11 atzeff = 0.63. By combining four redshift slices atzeff = 0.63, 0.69, 0.75, and 0.81, we determined a more constrained value ofα = 0.968−0.095+0.060. For the entire redshift range ofzeff = 0.715, we measuredbC = 2.64 ± 0.20 for the constant-bias model,b(z0) =bC, and thenbD = 1.80 ± 0.13 for the evolving-bias model,b(z) =bD/D(z), withD(z) denoting the growth rate of linear structures. Additionally, we measured the clustering bias for individual redshift bins. Conclusions.We detected the cross-correlation of LoTSS radio sources and eBOSS LRGs at a 9.2σstatistical significance for one single redshift bin and at a 14.7σsignificance when the four redshift bins were combined. For the BAO signal, we achieved a significance of 2.2σfor a single redshift bin, 2.7σfor the combined cross-correlation and eBOSS auto-correlation, and 4σfor the combined analysis of four redshift bins in the cross-correlation, when assuming a Gaussian distribution for the BAO dilation parameter. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Context.We study the flux density dependence of the redshift distribution of low-frequency radio sources observed in the LOFAR Two-metre Sky Survey (LoTSS) deep fields and apply it to estimate the clustering length of the large-scale structure of the Universe, examining flux density limited samples (1 mJy, 2 mJy, 4 mJy and 8 mJy) of LoTSS wide field radio sources. Methods.We utilise and combine the posterior probability distributions of photometric redshift determinations for LoTSS deep field observations from three different fields (Boötes, Lockman hole and ELAIS-N1, together about 26 square degrees of sky), which are available for between 91% to 96% of all sources above the studied flux density thresholds and observed in the area covered by multi-frequency data. We estimate uncertainties by a bootstrap method. We apply the inferred redshift distribution on the LoTSS wide area radio sources from the HETDEX field (LoTSS-DR1; about 424 square degrees) and make use of the Limber approximation and a power-law model of three dimensional clustering to measure the clustering length,r0, for various models of the evolution of clustering. Results.We find that the redshift distributions from all three LoTSS deep fields agree within expected uncertainties. We show that the radio source population probed by LoTSS at flux densities above 1 mJy has a median redshift of at least 0.9. At 2 mJy, we measure the clustering length of LoTSS radio sources to ber0 = (10.1 ± 2.6) h−1Mpc in the context of the comoving clustering model. Conclusions.Our findings are in agreement with measurements at higher flux density thresholds at the same frequency and with measurements at higher frequencies in the context of the comoving clustering model. Based on the inferred flux density limited redshift distribution of LoTSS deep field radio sources, the full wide area LoTSS will eventually cover an effective (source weighted) comoving volume of about 10 h−3Gpc3
    more » « less
  4. null (Ed.)
    ABSTRACT We describe the first results on weak gravitational lensing from the SuperCLASS survey: the first survey specifically designed to measure the weak lensing effect in radio-wavelength data, both alone and in cross-correlation with optical data. We analyse $$1.53 \, \mathrm{deg}^2$$ of optical data from the Subaru telescope and $$0.26 \, \mathrm{deg}^2$$ of radio data from the e-MERLIN and VLA telescopes (the DR1 data set). Using standard methodologies on the optical data only we make a significant (10σ) detection of the weak lensing signal (a shear power spectrum) due to the massive supercluster of galaxies in the targeted region. For the radio data we develop a new method to measure the shapes of galaxies from the interferometric data, and we construct a simulation pipeline to validate this method. We then apply this analysis to our radio observations, treating the e-MERLIN and VLA data independently. We achieve source densities of $$0.5 \,$$ arcmin−2 in the VLA data and $$0.06 \,$$ arcmin−2 in the e-MERLIN data, numbers which prove too small to allow a detection of a weak lensing signal in either the radio data alone or in cross-correlation with the optical data. Finally, we show preliminary results from a visibility-plane combination of the data from e-MERLIN and VLA which will be used for the forthcoming full SuperCLASS data release. This approach to data combination is expected to enhance both the number density of weak lensing sources available, and the fidelity with which their shapes can be measured. 
    more » « less
  5. null (Ed.)
    ABSTRACT The SuperCLuster Assisted Shear Survey (SuperCLASS) is a legacy programme using the e-MERLIN interferometric array. The aim is to observe the sky at L-band (1.4 GHz) to a r.m.s. of $$7\, \mu {\rm Jy}\,$$beam−1 over an area of $$\sim 1\, {\rm deg}^2$$ centred on the Abell 981 supercluster. The main scientific objectives of the project are: (i) to detect the effects of weak lensing in the radio in preparation for similar measurements with the Square Kilometre Array (SKA); (ii) an extinction free census of star formation and AGN activity out to z ∼ 1. In this paper we give an overview of the project including the science goals and multiwavelength coverage before presenting the first data release. We have analysed around 400 h of e-MERLIN data allowing us to create a Data Release 1 (DR1) mosaic of $$\sim 0.26\, {\rm deg}^2$$ to the full depth. These observations have been supplemented with complementary radio observations from the Karl G. Jansky Very Large Array (VLA) and optical/near infrared observations taken with the Subaru, Canada-France-Hawaii, and Spitzer Telescopes. The main data product is a catalogue of 887 sources detected by the VLA, of which 395 are detected by e-MERLIN and 197 of these are resolved. We have investigated the size, flux, and spectral index properties of these sources finding them compatible with previous studies. Preliminary photometric redshifts, and an assessment of galaxy shapes measured in the radio data, combined with a radio-optical cross-correlation technique probing cosmic shear in a supercluster environment, are presented in companion papers. 
    more » « less