- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
30
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Campbell, Joshua (3)
-
Aberle, Denise (1)
-
Achilefu, Samuel I. (1)
-
Ademuyiwa, Foluso O. (1)
-
Adey, Andrew C. (1)
-
Aft, Rebecca L. (1)
-
Agarwal, Rachana (1)
-
Aguilar, Ruben A. (1)
-
Alikarami, Fatemeh (1)
-
Allaj, Viola (1)
-
Amos, Christopher (1)
-
Anders, Robert A. (1)
-
Angelo, Michael R. (1)
-
Anton, Kristen (1)
-
Ashenberg, Orr (1)
-
Aster, Jon C. (1)
-
Babur, Ozgun (1)
-
Bahmani, Amir (1)
-
Balasubramanian, Ravi (1)
-
Balsubramani, Akshay (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Beygelzimer (0)
-
A. E. Lischka, E.B. Dyer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. Higgins (0)
-
A. I. Sacristán, J. C. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lashkaripour, Ali ; Rodriguez, Christopher ; Mehdipour, Noushin ; Mardian, Rizki ; McIntyre, David ; Ortiz, Luis ; Campbell, Joshua ; Densmore, Douglas ( , Nature Communications)
Abstract Droplet-based microfluidic devices hold immense potential in becoming inexpensive alternatives to existing screening platforms across life science applications, such as enzyme discovery and early cancer detection. However, the lack of a predictive understanding of droplet generation makes engineering a droplet-based platform an iterative and resource-intensive process. We present a web-based tool, DAFD, that predicts the performance and enables design automation of flow-focusing droplet generators. We capitalize on machine learning algorithms to predict the droplet diameter and rate with a mean absolute error of less than 10
μ m and 20 Hz. This tool delivers a user-specified performance within 4.2% and 11.5% of the desired diameter and rate. We demonstrate that DAFD can be extended by the community to support additional fluid combinations, without requiring extensive machine learning knowledge or large-scale data-sets. This tool will reduce the need for microfluidic expertise and design iterations and facilitate adoption of microfluidics in life sciences. -
Rozenblatt-Rosen, Orit ; Regev, Aviv ; Oberdoerffer, Philipp ; Nawy, Tal ; Hupalowska, Anna ; Rood, Jennifer E. ; Ashenberg, Orr ; Cerami, Ethan ; Coffey, Robert J. ; Demir, Emek ; et al ( , Cell)