skip to main content

Search for: All records

Creators/Authors contains: "Camps, O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper addresses the problem of identification of error in variables switched linear models from experimental input/output data. This problem is known to be generically NP hard and thus computationally expensive to solve. To address this difficulty, several relaxations have been proposed in the past few years. While solvable in polynomial time these (convex) relaxations tend to scale poorly with the number of points and number/order of the subsystems, effectively limiting their applicability to scenarios with relatively small number of data points. To address this difficulty, in this paper we propose an efficient method that only requires performing (number of subsystems) singular value decompositions of matrices whose size is independent of the number of points. The underlying idea is to obtain a sum-of-squares polynomial approximation of the support of each subsystem one-at-a-time, and use these polynomials to segment the data into sets, each generated by a single subsystem. As shown in the paper, exploiting ideas from Christoffel's functions allows for finding these polynomial approximations simply by performing SVDs. The parameters of each subsystem can then be identified from the segmented data using existing error-in-variables (EIV) techniques.
  2. In this paper we propose a data-driven fault detection framework for semi-supervised scenarios where labeled training data from the system under consideration (the “target”) is imbalanced (e.g. only relatively few labels are available from one of the classes), but data from a related system (the “source”) is readily available. An example of this situation is when a generic simulator is available, but needs to be tuned on a case-by-case basis to match the parameters of the actual system. The goal of this paper is to work with the statistical distribution of the data without necessitating system identification. Our main result shows that if the source and target domain are related by a linear transformation (a common assumption in domain adaptation), the problem of designing a classifier that minimizes a miss-classification loss over the joint source and target domains reduces to a convex optimization subject to a single (non-convex) equality constraint. This second-order equality constraint can be recast as a rank-1 optimization problem, where the rank constraint can be efficiently handled through a reweighted nuclear norm surrogate. These results are illustrated with a practical application: fault detection in additive manufacturing (industrial 3D printing). The proposed method is able to exploit simulationmore »data (source domain) to substantially outperform classifiers tuned using only data from a single domain.« less
  3. This paper addresses the problem of subspace clustering in the presence of outliers. Typically, this scenario is handled through a regularized optimization, whose computational complexity scales polynomially with the size of the data. Further, the regularization terms need to be manually tuned to achieve optimal performance. To circumvent these difficulties, in this paper we propose an outlier removal algorithm based on evaluating a suitable sum-ofsquares polynomial, computed directly from the data. This algorithm only requires performing two singular value decompositions of fixed size, and provides certificates on the probability of misclassifying outliers as inliers.