skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Cantiello, Matteo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Although stable neutron stars (NSs) can in principle exist down to massesMns≈ 0.1M, standard models of stellar core-collapse predict a robust lower limitMns≳ 1.2M, roughly commensurate with the Chandrasekhar massMChof the progenitor’s iron core (electron fractionYe≈ 0.5). However, this limit may be circumvented in sufficiently dense neutron-rich environments (Ye< 0.5) for whichMChYe2is reduced to ≲1M. Such physical conditions could arise in the black hole accretion disks formed from the collapse of rapidly rotating stars (“collapsars”), as a result of gravitational instabilities and cooling-induced fragmentation, similar to models for planet formation in protostellar disks. We confirm that the conditions to form subsolar-mass NS (ssNS) may be marginally satisfied in the outer regions of massive neutrino-cooled collapsar disks. If the disk fragments into multiple ssNSs, their subsequent coalescence offers a channel for precipitating subsolar mass LIGO/Virgo gravitational-wave mergers that does not implicate primordial black holes. The model makes several additional predictions: (1) ∼Hz frequency Doppler modulation of the ssNS-merger gravitational-wave signals due to the binary’s orbital motion in the disk; (2) at least one additional gravitational-wave event (coincident within ≲hours), from the coalescence of the ssNS-merger remnant(s) with the central black hole; (3) an associated gamma-ray burst and supernova counterpart, the latter boosted in energy and enriched withr-process elements from the NS merger(s) embedded within the exploding stellar envelope (“kilonovae inside a supernova”).

     
    more » « less
  2. Abstract

    Eruptive mass loss in massive stars is known to occur, but the mechanism(s) are not yet well understood. One proposed physical explanation appeals to opacity-driven super-Eddington luminosities in stellar envelopes. Here, we present a 1D model for eruptive mass loss and implement this model in theMESAstellar evolution code. The model identifies regions in the star where the energy associated with a local super-Eddington luminosity exceeds the binding energy of the overlaying envelope. The material above such regions is ejected from the star. Stars with initial masses of 10−100Mat solar and SMC metallicities are evolved through core helium burning, with and without this new eruptive mass-loss scheme. We find that eruptive mass loss of up to ∼10−2Myr−1can be driven by this mechanism, and occurs in a vertical band on the H-R diagram between3.5log(Teff/K)4.0. This predicted eruptive mass loss prevents stars of initial masses ≳20Mfrom evolving to become red supergiants (RSGs), with the stars instead ending their lives as blue supergiants, and offers a possible explanation for the observed lack of RSGs in that mass regime.

     
    more » « less
  3. Abstract

    Nuclear star clusters (NSCs), made up of a dense concentration of stars and the compact objects they leave behind, are ubiquitous in the central regions of galaxies surrounding the central supermassive black hole (SMBH). Close interactions between stars and stellar-mass black holes (sBHs) lead to tidal disruption events (TDEs). We uncover an interesting new phenomenon: for a subset of these, the unbound debris (to the sBH) remains bound to the SMBH, accreting at a later time, thus giving rise to a second flare. We compute the rate of such events and find them ranging within 10−6–10−3yr−1gal−1for SMBH mass ≃106–109M. Time delays between the two flares spread over a wide range, from less than a year to hundreds of years. The temporal evolution of the light curves of the second flare can vary between the standardt−5/3power law to much steeper decays, providing a natural explanation for observed light curves in tension with the classical TDE model. Our predictions have implications for learning about NSC properties and calibrating its sBH population. Some double flares may be electromagnetic counterparts to LISA extreme-mass-ratio inspiral sources. Another important implication is the possible existence of TDE-like events in very massive SMBHs, where TDEs are not expected. Such flares can affect spin measurements relying on TDEs in the upper SMBH range.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  4. Abstract

    One-dimensional stellar evolution calculations produce uncertain predictions for quantities like the age, core mass, core compactness, and nucleosynthetic yields; a key source of uncertainty is the modeling of interfaces between regions that are convectively stable and those that are not. Theoretical and numerical work has demonstrated that there should be numerous processes adjacent to the convective boundary that induce chemical and angular momentum transport, as well as modify the thermal structure of the star. One such process is called convective penetration, wherein vigorous convection extends beyond the nominal convective boundary and alters both the composition and thermal structure. In this work, we incorporate the process of convective penetration in stellar evolution calculations using the stellar evolution software instrumentmesa. We implement convective penetration according to the description presented by Anders et al. to to calculate a grid of models from the pre-main sequence to helium core depletion. The extent of the convective penetration zone is self-consistently calculated at each time step without introducing new free parameters. We find both a substantial penetration zone in all models with a convective core and observable differences to global stellar properties such as the luminosity and radius. We present how the predicted radial extent of the penetration zone scales with the total stellar mass, age, and metallicity of the star. We discuss our results in the context of existing numerical and observational studies.

     
    more » « less
  5. ABSTRACT

    Stars embedded in active galactic nucleus (AGN) discs or captured by them may scatter onto the supermassive black hole (SMBH), leading to a tidal disruption event (TDE). Using the moving-mesh hydrodynamics simulations with arepo, we investigate the dependence of debris properties in in-plane TDEs in AGN discs on the disc density and the orientation of stellar orbits relative to the disc gas (pro- and retro-grade). Key findings are: (1) Debris experiences continuous perturbations from the disc gas, which can result in significant and continuous changes in debris energy and angular momentum compared to ‘naked’ TDEs. (2) Above a critical density of a disc around an SMBH with mass M• [ρcrit ∼ 10−8 g cm−3 (M•/106 M⊙)−2.5] for retrograde stars, both bound and unbound debris is fully mixed into the disc. The density threshold for no bound debris return, inhibiting the accretion component of TDEs, is $\rho _{\rm crit,bound} \sim 10^{-9}{\rm g~cm^{-3}}(M_{\bullet }/10^{6}\, {\rm M}_{\odot })^{-2.5}$. (3) Observationally, AGN-TDEs transition from resembling naked TDEs in the limit of ρdisc ≲ 10−2ρcrit,bound to fully muffled TDEs with associated inner disc state changes at ρdisc ≳ ρcrit,bound, with a superposition of AGN + TDE in between. Stellar or remnant passages themselves can significantly perturb the inner disc. This can lead to an immediate X-ray signature and optically detectable inner disc state changes, potentially contributing to the changing-look AGN phenomenon. (4) Debris mixing can enrich the average disc metallicity over time if the star’s metallicity exceeds that of the disc gas. We point out that signatures of AGN-TDEs may be found in large AGN surveys.

     
    more » « less
  6. Abstract

    About ten percent of Sun-like (1–2M) stars will engulf a 1–10MJplanet as they expand during the red giant branch (RGB) or asymptotic giant branch (AGB) phase of their evolution. Once engulfed, these planets experience a strong drag force in the star’s convective envelope and spiral inward, depositing energy and angular momentum. For these mass ratios, the inspiral takes ∼10–102yr (∼102–103orbits); the planet undergoes tidal disruption at a radius of ∼1R. We use the Modules for Experiments in Stellar Astrophysics (MESA) software instrument to track the stellar response to the energy deposition while simultaneously evolving the planetary orbit. For RGB stars, as well as AGB stars withMp≲ 5MJplanets, the star responds quasi-statically but still brightens measurably on a timescale of years. In addition, asteroseismic indicators, such as the frequency spacing or rotational splitting, differ before and after engulfment. For AGB stars, engulfment of anMp≳ 5MJplanet drives supersonic expansion of the envelope, causing a bright, red, dusty eruption similar to a “luminous red nova.” Based on the peak luminosity, color, duration, and expected rate of these events, we suggest that engulfment events on the AGB could be a significant fraction of low-luminosity red novae in the Galaxy. We do not find conditions where the envelope is ejected prior to the planet’s tidal disruption, complicating the interpretation of short-period giant planets orbiting white dwarfs as survivors of common envelope evolution.

     
    more » « less
  7. Abstract Observations show an almost ubiquitous presence of extra mixing in low-mass upper giant branch stars. The most commonly invoked explanation for this is thermohaline mixing. One-dimensional stellar evolution models include various prescriptions for thermohaline mixing, but the use of observational data directly to discriminate between thermohaline prescriptions has thus far been limited. Here, we propose a new framework to facilitate direct comparison: using carbon-to-nitrogen measurements from the Sloan Digital Sky Survey-IV APOGEE survey as a probe of mixing and a fluid parameter known as the reduced density ratio from one-dimensional stellar evolution programs, we compare the observed amount of extra mixing on the upper giant branch to predicted trends from three-dimensional fluid dynamics simulations. Using this method, we are able to empirically constrain how mixing efficiency should vary with the reduced density ratio. We find the observed amount of extra mixing is strongly correlated with the reduced density ratio and that trends between reduced density ratio and fundamental stellar parameters are robust across choices for modeling prescription. We show that stars with available mixing data tend to have relatively low density ratios, which should inform the regimes selected for future simulation efforts. Finally, we show that there is increased mixing at low reduced density ratios, which is consistent with current hydrodynamical models of thermohaline mixing. The introduction of this framework sets a new standard for theoretical modeling efforts, as validation for not only the amount of extra mixing, but trends between the degree of extra mixing and fundamental stellar parameters is now possible. 
    more » « less
  8. Abstract

    Massive stars die in catastrophic explosions that seed the interstellar medium with heavy elements and produce neutron stars and black holes. Predictions of the explosion’s character and the remnant mass depend on models of the star’s evolutionary history. Models of massive star interiors can be empirically constrained by asteroseismic observations of gravity wave oscillations. Recent photometric observations reveal a ubiquitous red noise signal on massive main sequence stars; a hypothesized source of this noise is gravity waves driven by core convection. We present three-dimensional simulations of massive star convection extending from the star’s centre to near its surface, with realistic stellar luminosities. Using these simulations, we predict the photometric variability due to convectively driven gravity waves at the surfaces of massive stars, and find that gravity waves produce photometric variability of a lower amplitude and lower characteristic frequency than the observed red noise. We infer that the photometric signal of gravity waves excited by core convection is below the noise limit of current observations, and thus the red noise must be generated by an alternative process.

     
    more » « less
  9. Abstract

    Convection is ubiquitous in stars and occurs under many different conditions. Here we explore convection in main-sequence stars through two lenses: dimensionless parameters arising from stellar structure and parameters that emerge from the application of mixing length theory. We first define each quantity in terms familiar to both the 1D stellar evolution community and the hydrodynamics community. We then explore the variation of these quantities across different convection zones, different masses, and different stages of main-sequence evolution. We find immense diversity across stellar convection zones. Convection occurs in thin shells, deep envelopes, and nearly spherical cores; it can be efficient or inefficient, rotationally constrained or not, transsonic or deeply subsonic. This atlas serves as a guide for future theoretical and observational investigations by indicating which regimes of convection are active in a given star, and by describing appropriate model assumptions for numerical simulations.

     
    more » « less
  10. ABSTRACT

    The Kepler mission revealed a plethora of stellar variability in the light curves of many stars, some associated with magnetic activity or stellar oscillations. In this work, we analyse the periodic signal in 162 intermediate-mass stars, interpreted as Rossby modes and rotational modulation – the so-called hump and spike feature. We investigate whether the rotational modulation (spike) is due to stellar spots caused by magnetic fields or due to Overstable Convective (OsC) modes resonantly exciting g modes, with frequencies corresponding to the convective core rotation rate. Assuming that the spikes are created by magnetic spots at the stellar surface, we recover the amplitudes of the magnetic fields, which are in good agreement with theoretical predictions. Our data show a clear anticorrelation between the spike amplitudes and stellar mass and possibly a correlation with stellar age, consistent with the dynamo-generated magnetic fields theory in (sub)-surface convective layers. Investigating the harmonic behaviour, we find that for 125 stars neither of the two possible explanations can be excluded. While our results suggest that the dynamo-generated magnetic field scenario is more likely to explain the spike feature, we assess further work is needed to distinguish between the two scenarios. One method for ruling out one of the two explanations is to directly observe magnetic fields in hump and spike stars. Another would be to impose additional constraints through detailed modelling of our stars, regarding the rotation requirement in the OsC mode scenario or the presence of a convective-core (stellar age).

     
    more » « less