- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
20
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Apel, Eric C. (2)
-
Cantrell, Christopher A. (2)
-
Emmons, Louisa K. (2)
-
Hall, Samuel R. (2)
-
Hornbrook, Rebecca S. (2)
-
Orlando, John J. (2)
-
Ullmann, Kirk (2)
-
Ahmed, Shaddy (1)
-
Blake, Donald R. (1)
-
Boylan, Patrick (1)
-
Brune, William H. (1)
-
Campos, Teresa (1)
-
Daube, Bruce (1)
-
DeMarsh, Kate E. (1)
-
Flocke, Frank (1)
-
Fried, Alan (1)
-
Helmig, Detlev (1)
-
Hills, Alan J. (1)
-
Huey, L. Gregory (1)
-
Mauldin, Roy L. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
2022 USENIX Annual Technical Conference (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Agarwal (0)
-
A. Beygelzimer (0)
-
A. E. Lischka (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2023
-
Ahmed, Shaddy ; Thomas, Jennie L. ; Tuite, Katie ; Stutz, Jochen ; Flocke, Frank ; Orlando, John J. ; Hornbrook, Rebecca S. ; Apel, Eric C. ; Emmons, Louisa K. ; Helmig, Detlev ; et al ( , Journal of Geophysical Research: Atmospheres)
Abstract Reactive chlorine and bromine species emitted from snow and aerosols can significantly alter the oxidative capacity of the polar boundary layer. However, halogen production mechanisms from snow remain highly uncertain, making it difficult for most models to include descriptions of halogen snow emissions and to understand the impact on atmospheric chemistry. We investigate the influence of Arctic halogen emissions from snow on boundary layer oxidation processes using a one‐dimensional atmospheric chemistry and transport model (PACT‐1D). To understand the combined impact of snow emissions and boundary layer dynamics on atmospheric chemistry, we model Cl2and Br2primary emissions from snow and include heterogeneous recycling of halogens on both snow and aerosols. We focus on a 2‐day case study from the 2009 Ocean‐Atmosphere‐Sea Ice‐Snowpack campaign at Utqiaġvik, Alaska. The model reproduces both the diurnal cycle and high quantity of Cl2observed, along with the measured concentrations of Br2, BrO, and HOBr. Due to the combined effects of emissions, recycling, vertical mixing, and atmospheric chemistry, reactive chlorine is typically confined to the lowest 15 m of the atmosphere, while bromine can impact chemistry up to and above the surface inversion height. Upon including halogen emissions and recycling, the concentration of HO
« lessx (HOx = OH + HO2) at the surface increases bymore »as much as a factor of 30 at mid‐day. The change in HOx due to halogen chemistry, as well as chlorine atoms derived from snow emissions, significantly reduce volatile organic compound lifetimes within a shallow layer near the surface.