skip to main content

Search for: All records

Creators/Authors contains: "Cao, Chen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fernandez-Valverde, Selene L. (Ed.)
    Both the composition of cell types and their spatial distribution in a tissue play a critical role in cellular function, organ development, and disease progression. For example, intratumor heterogeneity and the distribution of transcriptional and genetic events in single cells drive the genesis and development of cancer. However, it can be challenging to fully characterize the molecular profile of cells in a tissue with high spatial resolution because microscopy has limited ability to extract comprehensive genomic information, and the spatial resolution of genomic techniques tends to be limited by dissection. There is a growing need for tools that can be used to explore the relationship between histological features, gene expression patterns, and spatially correlated genomic alterations in healthy and diseased tissue samples. Here, we present a technique that combines label-free histology with spatially resolved multiomics in unfixed and unstained tissue sections. This approach leverages stimulated Raman scattering microscopy to provide chemical contrast that reveals histological tissue architecture, allowing for high-resolution in situ laser microdissection of regions of interests. These microtissue samples are then processed for DNA and RNA sequencing to identify unique genetic profiles that correspond to distinct anatomical regions. We demonstrate the capabilities of this technique by mapping gene expression and copy number alterations to histologically defined regions in human oral squamous cell carcinoma (OSCC). Our approach provides complementary insights in tumorigenesis and offers an integrative tool for macroscale cancer tissues with spatial multiomics assessments. 
    more » « less
  2. null (Ed.)
    Exploring the spatiotemporal distribution of earthquake activity, especially earthquake migration of fault systems, can greatly to understand the basic mechanics of earthquakes and the assessment of earthquake risk. By establishing a three-dimensional strike-slip fault model, to derive the stress response and fault slip along the fault under regional stress conditions. Our study helps to create a long-term, complete earthquake catalog. We modelled Long-Short Term Memory (LSTM) networks for pattern recognition of the synthetical earthquake catalog. The performance of the models was compared using the mean-square error (MSE). Our results showed clearly the application of LSTM showed a meaningful result of 0.08% in the MSE values. Our best model can predict the time and magnitude of the earthquakes with a magnitude greater than Mw = 6.5 with a similar clustering period. These results showed conclusively that applying LSTM in a spatiotemporal series prediction provides a potential application in the study of earthquake mechanics and forecasting of major earthquake events. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    In large‐eddy simulations, subgrid‐scale (SGS) processes are parameterized as a function of filtered grid‐scale variables. First‐order, algebraic SGS models are based on the eddy‐viscosity assumption, which does not always hold for turbulence. Here we apply supervised deep neural networks (DNNs) to learn SGS stresses from a set of neighboring coarse‐grained velocity from direct numerical simulations of the convective boundary layer at friction Reynolds numbersReτup to 1243 without invoking the eddy‐viscosity assumption. The DNN model was found to produce higher correlation between SGS stresses compared to the Smagorinsky model and the Smagorinsky‐Bardina mixed model in the surface and mixed layers and can be applied to different grid resolutions and various stability conditions ranging from near neutral to very unstable. The DNN model can capture key statistics of turbulence ina posteriori(online) tests when applied to large‐eddy simulations of the atmospheric boundary layer.

    more » « less