Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper proposes the Phy-DRL: a physics-regulated deep reinforcement learning (DRL) framework for safety-critical autonomous systems. The Phy-DRL has three distinguished invariant-embedding designs: i) residual action policy (i.e., integrating data-driven-DRL action policy and physics-model-based action policy), ii) automatically constructed safety-embedded reward, and iii) physics-model-guided neural network (NN) editing, including link editing and activation editing. Theoretically, the Phy-DRL exhibits 1) a mathematically provable safety guarantee and 2) strict compliance of critic and actor networks with physics knowledge about the action-value function and action policy. Finally, we evaluate the Phy-DRL on a cart-pole system and a quadruped robot. The experiments validate our theoretical results and demonstrate that Phy-DRL features guarantee safety compared to purely data-driven DRL and solely model-based design, while offering remarkably fewer learning parameters and fast training towards safety guarantee.more » « less
-
Deep reinforcement learning (DRL) has demonstrated impressive success in solving complex control tasks by synthesizing control policies from data. However, the safety and stability of applying DRL to safety-critical systems remain a primary concern and challenging problem. To address the problem, we propose the Phy-DRL: a novel physics-model regulated deep reinforcement learning framework. The Phy-DRL is novel in two architectural designs: a physics-model-regulated reward and residual control, which integrates physics-model-based control and data-driven control. The concurrent designs enable the Phy-DRL to mathematically provable safety and stability guarantees. Finally, the effectiveness of the Phy-DRL is validated by an inverted pendulum system. Additionally, the experimental results demonstrate that the Phy-DRL features remarkably accelerated training and enlarged reward.more » « less
-
Nowadays, AI-based techniques, such as deep neural networks (DNNs), are widely deployed in autonomous systems for complex mission requirements (e.g., motion planning in robotics). However, DNNs-based controllers are typically very complex, and it is very hard to formally verify their correctness, potentially causing severe risks for safety-critical autonomous systems. In this paper, we propose a construction scheme for a so-called Safe-visor architecture to sandbox DNNs-based controllers. Particularly, we consider the construction under a stochastic game framework to provide a system-level safety guarantee which is robust to noises and disturbances. A supervisor is built to check the control inputs provided by a DNNs-based controller and decide whether to accept them. Meanwhile, a safety advisor is running in parallel to provide fallback control inputs in case the DNN-based controller is rejected. We demonstrate the proposed approaches on a quadrotor employing an unverified DNNs-based controller.more » « less
An official website of the United States government

Full Text Available