Skyline path queries (SPQs) extend skyline queries to multi-dimensional networks, such as multi-cost road networks (MCRNs). Such queries return a set of non-dominated paths between two given network nodes. Despite the existence of extensive works on evaluating different SPQ variants, SPQ evaluation is still very inefficient due to the nonexistence of efficient index structures to support such queries. Existing index building approaches for supporting shortest-path query execution, when directly extended to support SPQs, use an unreasonable amount of space and time to build, making them impractical for processing large graphs. In this paper, we propose a novel index structure,
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
backbone index , and a corresponding index construction method that condenses an initial MCRN to multiple smaller summarized graphs with different granularity. We present efficient approaches to find approximate solutions to SPQs by utilizing the backbone index structure. Furthermore, considering making good use of historical query and query results, we propose two models,S kylineP athG raphN euralN etwork (SP-GNN) andT ransfer SP-GNN (TSP-GNN), to support effective SPQ processing. Our extensive experiments on real-world large road networks show that the backbone index can support finding meaningful approximate SPQ solutions efficiently. The backbone index can be constructed in a reasonable time, which dramatically outperforms the construction of other types of indexes for road networks. As far as we know, this is the first compact index structure that can support efficient approximate SPQ evaluation on large MCRNs. The results on the SP-GNN and TSP-GNN models also show that both models can help get approximate SPQ answers efficiently.Free, publicly-accessible full text available April 23, 2025 -
Free, publicly-accessible full text available March 1, 2025
-
Recommender Systems ( RecSys ) provide suggestions in many decision-making processes. Given that groups of people can perform many real-world activities (e.g., a group of people attending a conference looking for a place to dine), the need for recommendations for groups has increased. A wide range of Group Recommender Systems ( GRecSys ) has been developed to aggregate individual preferences to group preferences. We analyze 175 studies related to GRecSys . Previous works evaluate their systems using different types of groups (sizes and cohesiveness), and most of such works focus on testing their systems using only one type of item, called Experience Goods (EG). As a consequence, it is hard to get consistent conclusions about the performance of GRecSys . We present the aggregation strategies and aggregation functions that GRecSys commonly use to aggregate group members’ preferences. This study experimentally compares the performance (i.e., accuracy, ranking quality, and usefulness) using four metrics (Hit Ratio, Normalize Discounted Cumulative Gain, Diversity, and Coverage) of eight representative RecSys for group recommendations on ephemeral groups. Moreover, we use two different aggregation strategies, 10 different aggregation functions, and two different types of items on two types of datasets (EG and Search Goods (SG)) containing real-life datasets. The results show that the evaluation of GRecSys needs to use both EG and SG types of data, because the different characteristics of datasets lead to different performance. GRecSys using Singular Value Decomposition or Neural Collaborative Filtering methods work better than others. It is observed that the Average aggregation function is the one that produces better results.more » « less