We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and ${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $\mu$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $50{{\ \rm per\ cent}}$ solar. To explain the measured dust-corrected luminosity ratios of $\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$ and $\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$ for our sample, ionization parameters log (U) < −2 and electron densities $\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. Themore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
The Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [CII] at Early times (ALPINE) targets the [CII] 158 μ m line and the far-infrared continuum in 118 spectroscopically confirmed star-forming galaxies between z = 4.4 and z = 5.9. It represents the first large [CII] statistical sample built in this redshift range. We present details regarding the data processing and the construction of the catalogs. We detected 23 of our targets in the continuum. To derive accurate infrared luminosities and obscured star formation rates (SFRs), we measured the conversion factor from the ALMA 158 μ m rest-frame dust continuum luminosity to the total infrared luminosity ( L IR ) after constraining the dust spectral energy distribution by stacking a photometric sample similar to ALPINE in ancillary single-dish far-infrared data. We found that our continuum detections have a median L IR of 4.4 × 10 11 L ⊙ . We also detected 57 additional continuum sources in our ALMA pointings. They are at a lower redshift than the ALPINE targets, with a mean photometric redshift of 2.5 ± 0.2. We measured the 850 μ m number counts between 0.35 and 3.5 mJy, thus improving the current interferometric constraints in this flux density range. Wemore »
-
We studied the molecular gas properties of AzTEC/C159, a star-forming disk galaxy at $z=4.567$. We secured $^{12}$CO molecular line detections for the $J=2\to1$ and $J=5\to4$ transitions using the Karl G. Jansky VLA and the NOEMA interferometer. The broad (FWHM$\sim750\,{\rm km\,s}^{-1}$) and tentative double-peaked profiles of both $^{12}$CO lines are consistent with an extended molecular gas reservoir, which is distributed in a rotating disk as previously revealed from [CII] 158$\mu$m line observations. Based on the $^{12}$CO(2$\to$1) emission line we derived $L'_{\rm{CO}}=(3.4\pm0.6)\times10^{10}{\rm \,K\,km\,s}^{-1}{\rm \,pc}^{2}$, that yields a molecular gas mass of $M_{\rm H_2 }(\alpha_{\rm CO}/4.3)=(1.5\pm0.3)\times 10^{11}{\rm M}_\odot$ and unveils a gas-rich system with $\mu_{\rm gas}(\alpha_{\rm CO}/4.3)\equiv M_{\rm H_2}/M_\star=3.3\pm0.7$. The extreme star formation efficiency (SFE) of AzTEC/C159, parametrized by the ratio $L_{\rm{IR}}/L'_{\rm{CO}}=(216\pm80)\, {\rm L}_{\odot}{\rm \,(K\,km\,s}^{-1}{\rm \,pc}^{2})^{-1}$, is comparable to merger-driven starbursts such as local ultra-luminous infrared galaxies (ULIRGs) and SMGs. Likewise, the $^{12}$CO(5$\to$4)/CO(2$\to$1) line brightness temperature ratio of $r_{52}= 0.55\pm 0.15$ is consistent with high excitation conditions, similar to that observed in SMGs. We constrained the value for the $L'_{\text{CO}}-{\rm H}_2$ mass conversion factor in AzTEC/C159, i.e. $\alpha_{\text{CO}}=3.9^{+2.7}_{-1.3}{\rm \,M}_{\odot}{\rm \,K}^{-1}{\rm \,km}^{-1}{\rm \,s\,pc}^{-2}$, that is consistent with a self-gravitating molecular gas distribution as observed in local star-forming disk galaxies. Cold gas streams from cosmologicalmore »