- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cappelli, Seraina_L (2)
-
Liang, Maowei (2)
-
Allan, Eric (1)
-
Barry, Kathryn_E (1)
-
Borer, Elizabeth_T (1)
-
Craven, Dylan (1)
-
Doležal, Jiří (1)
-
Hautier, Yann (1)
-
He, Miao (1)
-
Isbell, Forest (1)
-
Lanta, Vojtěch (1)
-
Lepš, Jan (1)
-
Mason, Norman (1)
-
Palmborg, Cecilia (1)
-
Pichon, Noémie_A (1)
-
Reich, Peter_B (1)
-
Roscher, Christiane (1)
-
Seabloom, Eric_W (1)
-
Soons, Merel_B (1)
-
Tilman, David (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Biotic complexity, encompassing both competitive interactions within trophic levels and consumptive interactions among trophic levels, plays a fundamental role in maintaining ecosystem stability. While theory and experiments have established that plant diversity enhances ecosystem stability, the role of consumers in the diversity–stability relationships remains elusive. In a decade‐long grassland biodiversity experiment, we investigated how heterotrophic consumers (e.g., insects and fungi) interact with plant diversity to affect the temporal stability of plant community biomass. Plant diversity loss reduces community stability due to increased synchronisation among species but enhances the population‐level stability of the remaining plant species. Reducing trophic complexity via pesticide treatments does not directly affect either community‐ or population‐level stability but further amplifies plant species synchronisation. Our findings demonstrate that the loss of arthropod or fungal consumers can destabilise plant communities by exacerbating synchronisation, underscoring the crucial role of trophic complexity in maintaining ecological stability.more » « less
-
He, Miao; Barry, Kathryn_E; Soons, Merel_B; Allan, Eric; Cappelli, Seraina_L; Craven, Dylan; Doležal, Jiří; Isbell, Forest; Lanta, Vojtěch; Lepš, Jan; et al (, Communications Biology)Abstract Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition.more » « less
An official website of the United States government
