skip to main content


Search for: All records

Creators/Authors contains: "Cardinale, Christopher J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper examines the processes that drive Arctic anomalous surface warming and sea ice loss during winter-season tropospheric energy flux events, synoptic periods of increased tropospheric energy flux convergence ( F trop ), using the NASA MERRA-2 reanalysis. During an event, a poleward anomaly in F trop initially increases the sensible and latent energy of the Arctic troposphere; as the warm and moist troposphere loses heat, the anomalous energy source is balanced by a flux upward across the tropopause and a downward net surface flux. A new metric for the Arctic surface heating efficiency ( E trop ) is defined, which measures the fraction of the energy source that reaches the surface. Composites of high-, medium-, and low-efficiency events help identify key physical factors, including the vertical structure of F trop and Arctic surface preconditioning. In high-efficiency events ( E trop ≥ 0.63), a bottom-heavy poleward F trop occurs in the presence of an anomalously warm and unstratified Arctic—a consequence of decreased sea ice—resulting in increased vertical mixing, enhanced near-surface warming and moistening, and further sea ice loss. Smaller E trop , and thus weaker surface impacts, are found in events with anomalously large initial sea ice extent and more vertically uniform F trop . These differences in E trop are manifested primarily through turbulent heat fluxes rather than downward longwave radiation. The frequency of high-efficiency events has increased from the period 1980–99 to the period 2000–19, contributing to Arctic surface warming and sea ice decline. 
    more » « less
  2. null (Ed.)
    Abstract The flux of moist static energy into the polar regions plays a key role in the energy budget and climate of the polar regions. While usually studied from a vertically integrated perspective ( F wall ), this analysis examines its vertical structure, using the NASA-MERRA-2 reanalysis to compute climatological and anomalous fluxes of sensible, latent, and potential energy across 70°N and 65°S for the period 1980–2016. The vertical structure of the climatological flux is bimodal, with peaks in the middle to lower troposphere and middle to upper stratosphere. The near-zero flux at the tropopause defines the boundary between stratospheric ( F strat ) and tropospheric ( F trop ) contributions to F wall . Especially at 70°N, F strat is found to be important to the climatology and variability of F wall , contributing 20.9 W m −2 to F wall (19% of F wall ) during the winter and explaining 23% of the variance of F wall . During winter, an anomalous poleward increase in F strat preceding a sudden stratospheric warming is followed by an increase in outgoing longwave radiation anomalies, with little influence on the surface energy budget of the Arctic. Conversely, a majority of the energy input by an anomalous poleward increase in F trop goes toward warming the Arctic surface. Overall, F trop is found to be a better metric than F wall for evaluating the influence of atmospheric circulations on the Arctic surface climate. 
    more » « less