Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present Karl G. Jansky Very Large Array S - (2–4 GHz), C - (4–8 GHz), and X -band (8–12 GHz) continuum observations toward seven radio-loud quasars at z > 5. This sample has previously been found to exhibit spectral peaks at observed-frame frequencies above ∼1 GHz. We also present upgraded Giant Metrewave Radio Telescope (uGMRT) band-2 (200 MHz), band-3 (400 MHz), and band-4 (650 MHz) radio continuum observations toward eight radio-loud quasars at z > 5, selected from our previous GMRT survey, in order to sample their low-frequency synchrotron emission. Combined with archival radio continuum observations, all ten targets show evidence for spectral turnover. The turnover frequencies are ∼1–50 GHz in the rest frame, making these targets gigahertz-peaked-spectrum or high-frequency-peaker candidates. For the nine well-constrained targets with observations on both sides of the spectral turnover, we fit the entire radio spectrum with absorption models associated with synchrotron self-absorption and free-free absorption (FFA). Our results show that FFA in an external inhomogeneous medium can accurately describe the observed spectra for all nine targets, which may indicate an FFA origin for the radio spectral turnover in our sample. As for the complex spectrum of J114657.79+403708.6 at z = 5.00 with two spectral peaks, itmore »
-
Abstract We report deep Karl G. Jansky Very Large Array (VLA) observations of the optically ultraluminous and radio-quiet quasar SDSS J010013.02+280225.8 (hereafter J0100+2802) at redshift z = 6.3. We detected the radio continuum emission at 1.5 GHz, 6 GHz, and 10 GHz. This leads to a radio power-law spectral index of α = −0.52 ± 0.18 ( S ∝ ν α ). The radio source is unresolved in all VLA bands with an upper limit to the size of 0.″2 (i.e., ∼1.1 kpc) at 10 GHz. We find variability in the flux density (increase by ∼33%) and the spectral index (steepened) between observations in 2016 and 2017. We also find that the VLA 1.5 GHz flux density observed in the same year is 1.5 times that detected with the Very Long Baseline Array (VLBA) in 2016 at the same frequency. This difference suggests that half of the radio emission from J0100+2802 comes from a compact core within 40 pc, and the rest comes from the surrounding few-kiloparsec area, which is diffuse and resolved out in the VLBA observations. The diffuse emission is 4 times brighter than what would be expected if driven by star formation. We conclude that the centralmore »Free, publicly-accessible full text available April 1, 2023
-
We investigate the molecular gas content of z ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust ∼ 47 K and an optical depth τ ν = 0.2 at the [C II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C I ], ormore »Free, publicly-accessible full text available June 1, 2023
-
ABSTRACT Combining the visibilities measured by an interferometer to form a cosmological power spectrum is a complicated process. In a delay-based analysis, the mapping between instrumental and cosmological space is not a one-to-one relation. Instead, neighbouring modes contribute to the power measured at one point, with their respective contributions encoded in the window functions. To better understand the power measured by an interferometer, we assess the impact of instrument characteristics and analysis choices on these window functions. Focusing on the Hydrogen Epoch of Reionization Array (HERA) as a case study, we find that long-baseline observations correspond to enhanced low-k tails of the window functions, which facilitate foreground leakage, whilst an informed choice of bandwidth and frequency taper can reduce said tails. With simple test cases and realistic simulations, we show that, apart from tracing mode mixing, the window functions help accurately reconstruct the power spectrum estimator of simulated visibilities. The window functions depend strongly on the beam chromaticity and less on its spatial structure – a Gaussian approximation, ignoring side lobes, is sufficient. Finally, we investigate the potential of asymmetric window functions, down-weighting the contribution of low-k power to avoid foreground leakage. The window functions presented here correspond to themore »
-
We present Giant Metrewave Radio Telescope (GMRT) 323 MHz radio continuum observations toward 13 radio-loud quasars at z > 5, sampling the low-frequency synchrotron emission from these objects. Among the 12 targets successfully observed, we detected 10 above 4 σ significance, while 2 remain undetected. All of the detected sources appear as point sources. Combined with previous radio continuum detections from the literature, 9 quasars have power-law spectral energy distributions throughout the radio range; for some the flux density drops with increasing frequency while it increases for others. Two of these sources appear to have spectral turnover. For the power-law-like sources, the power-law indices have a positive range between 0.18 and 0.67 and a negative values between −0.90 and −0.27. For the turnover sources, the radio peaks around ∼1 and ∼10 GHz in the rest frame, the optically thin indices are −0.58 and −0.90, and the optically thick indices are 0.50 and 1.20. A magnetic field and spectral age analysis of SDSS J114657.59+403708.6 at z = 5.01 may indicate that the turnover is not caused by synchrotron self-absorption, but rather by free-free absorption by the high-density medium in the nuclear region. Alternatively, the apparent turnover may be an artifact of sourcemore »
-
Abstract We report the most sensitive upper limits to date on the 21 cm epoch of reionization power spectrum using 94 nights of observing with Phase I of the Hydrogen Epoch of Reionization Array (HERA). Using similar analysis techniques as in previously reported limits, we find at 95% confidence that Δ2(
k = 0.34h Mpc−1) ≤ 457 mK2atz = 7.9 and that Δ2(k = 0.36h Mpc−1) ≤ 3496 mK2atz = 10.4, an improvement by a factor of 2.1 and 2.6, respectively. These limits are mostly consistent with thermal noise over a wide range ofk after our data quality cuts, despite performing a relatively conservative analysis designed to minimize signal loss. Our results are validated with both statistical tests on the data and end-to-end pipeline simulations. We also report updated constraints on the astrophysics of reionization and the cosmic dawn. Using multiple independent modeling and inference techniques previously employed by HERA Collaboration, we find that the intergalactic medium must have been heated above the adiabatic cooling limit at least as early asz = 10.4, ruling out a broad set of so-called “cold reionization” scenarios. If this heating is due to high-mass X-ray binaries during the cosmic dawn, as is generally believed, our result’s 99% credible interval excludes the local relationshipmore » -
ABSTRACT We present a Bayesian jackknife test for assessing the probability that a data set contains biased subsets, and, if so, which of the subsets are likely to be biased. The test can be used to assess the presence and likely source of statistical tension between different measurements of the same quantities in an automated manner. Under certain broadly applicable assumptions, the test is analytically tractable. We also provide an open-source code, chiborg, that performs both analytic and numerical computations of the test on general Gaussian-distributed data. After exploring the information theoretical aspects of the test and its performance with an array of simulations, we apply it to data from the Hydrogen Epoch of Reionization Array (HERA) to assess whether different sub-seasons of observing can justifiably be combined to produce a deeper 21 cm power spectrum upper limit. We find that, with a handful of exceptions, the HERA data in question are statistically consistent and this decision is justified. We conclude by pointing out the wide applicability of this test, including to CMB experiments and the H0 tension.
-
Abstract Motivated by the desire for wide-field images with well-defined statistical properties for 21 cm cosmology, we implement an optimal mapping pipeline that computes a maximum likelihood estimator for the sky using the interferometric measurement equation. We demonstrate this “direct optimal mapping” with data from the Hydrogen Epoch of Reionization (HERA) Phase I observations. After validating the pipeline with simulated data, we develop a maximum likelihood figure-of-merit for comparing four sky models at 166 MHz with a bandwidth of 100 kHz. The HERA data agree with the GLEAM catalogs to < 10%. After subtracting the GLEAM point sources, the HERA data discriminate between the different continuum sky models, providing most support for the model of Byrne et al. We report the computation cost for mapping the HERA Phase I data and project the computation for the HERA 320-antenna data; both are feasible with a modern server. The algorithm is broadly applicable to other interferometers and is valid for wide-field and noncoplanar arrays.