skip to main content


Search for: All records

Creators/Authors contains: "Carlson, John A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Enhancing the functionality of silicon through the integration of other materials such as III-V semiconductors has been recognized as a path to overcoming limitations imposed by characteristics fundamental to silicon's material physics while still capitalizing on properties that have enabled the success of the global integrated circuit industry [1]–[2][3]. High-speed electronic devices, devices with high breakdown voltages, light emitting/detecting devices, and devices for photon control can all be integrated with conventional CMOS to perform specialized electronic or photonic functions if suitable methods for forming such heterogeneously integrated regions are available that provide high yield and are compatible with fabrication processes that occur subsequent to the heterogeneous integration process. Technical challenges include lattice mismatch, thermal expansion coefficient differences, having the capability to form low-resistance electrical contacts using materials that are compatible with CMOS, more generally managing cross-contamination in tools used for front-end-of-line processing after III-V regions are established on the silicon wafers, and thermal management for the heterogeneously integrated devices or circuits. These together create formidable obstacles, but there is also the obstacle of defining a business case for creating hybrid wafer fabs given the applications that would be served by ICs with enhanced functionality. Bringing functions that are off chip onto the chip needs to be justified both technically and financially. 
    more » « less
  2. Reed, Graham T. ; Knights, Andrew P. (Ed.)
    An array of active photonic devices is fabricated in unison after a heterogeneous integration process first metal-eutectically bonds these distinct materials as a distribution onto a silicon host wafer. The patterning out of heterogeneous materials followed by the formation of all photonic devices allows for wide-area fine-alignment without the need for discrete die alignment or placement. The integration process is designed as a CMOS-compatible, scalable method for bringing together distinct III-V epitaxial structures and optical-waveguiding epitaxial structures, demonstrating the capabilities of forming a multi-chip layer of photonic materials. Integrated GaAs-based vertical light-emitting transistors (LET) are designed and fabricated as the active devices whose third electrical terminal provides an electrical interconnect and thermal dissipation path to the silicon host wafer. The performance of these devices as both electrical transistors and spontaneous-emission optical devices is compared to their monolithically-integrated counterparts to investigate improvements in device characteristics when integrated onto silicon. The fabrication methods are modified and optimized for thin-film transferred materials and are then extended to transistor laser (TL) fabrication. Passive waveguiding structures are designed and simulated for coupling light from the active devices, and their fabrication scheme is presented such that it can be similarly performed with transferred materials. Work toward the demonstration of integrated transistor lasers is shown to represent progress toward an electronic-photonic circuit network. The combination of heterogeneous integration with three-terminal photonic structures enables an elegant solution to both packaging and signal interconnect constraints for the implementation of photonic logic in silicon photonics systems. 
    more » « less
  3. An array of heterogeneously integrated light-emitting transistors is fabricated after an epitaxial transfer process bonds and interconnects active III-V photonic material onto a CMOS- compatible host wafer for the purposes of establishing a photonic logic network. 
    more » « less