skip to main content

Search for: All records

Creators/Authors contains: "Caron, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93 ∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss conemore »bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (T orbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with $\Delta $ Δ E/E < 40% and a fluxgate magnetometer (FGM) on a ∼72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5 Hz Nyquist (nominally) with <0.3 nT/sqrt(Hz) noise at 1 Hz. The spinning satellites (T spin $\,\sim $ ∼ 3 s) are equipped with magnetorquers (air coils) that permit spin-up or -down and reorientation maneuvers. Using those, the spin axis is placed normal to the orbit plane (nominally), allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250 keV – 5 MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018 and launched by the ELaNa XVIII program on a Delta II rocket (with IceSatII as the primary). Mission operations are currently funded by NASA. Working under experienced UCLA mentors, with advice from The Aerospace Corporation and NASA personnel, more than 250 undergraduates have matured the ELFIN implementation strategy; developed the instruments, satellite, and ground systems and operate the two satellites. ELFIN’s already high potential for cutting-edge science return is compounded by concurrent equatorial Heliophysics missions (THEMIS, Arase, Van Allen Probes, MMS) and ground stations. ELFIN’s integrated data analysis approach, rapid dissemination strategies via the SPace Environment Data Analysis System (SPEDAS), and data coordination with the Heliophysics/Geospace System Observatory (H/GSO) optimize science yield, enabling the widest community benefits. Several storm-time events have already been captured and are presented herein to demonstrate ELFIN’s data analysis methods and potential. These form the basis of on-going studies to resolve the primary mission science objective. Broad energy precipitation events, precipitation bands, and microbursts, clearly seen both at dawn and dusk, extend from tens of keV to >1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective.« less
  2. Free, publicly-accessible full text available September 1, 2022
  3. Free, publicly-accessible full text available September 1, 2022
  4. Free, publicly-accessible full text available August 1, 2022
  5. Abstract The coherent photoproduction of $$\mathrm{J}/\psi $$ J / ψ and $${\uppsi '}$$ ψ ′ mesons was measured in ultra-peripheral Pb–Pb collisions at a center-of-mass energy $$\sqrt{s_{\mathrm {NN}}}~=~5.02$$ s NN = 5.02  TeV  with the ALICE detector. Charmonia are detected in the central rapidity region for events where the hadronic interactions are strongly suppressed. The $$\mathrm{J}/\psi $$ J / ψ is reconstructed using the dilepton ( $$l^{+} l^{-}$$ l + l - ) and proton–antiproton decay channels, while for the $${\uppsi '}$$ ψ ′   the dilepton and the $$l^{+} l^{-} \pi ^{+} \pi ^{-}$$ l + l - πmore »+ π - decay channels are studied. The analysis is based on an event sample corresponding to an integrated luminosity of about 233 $$\mu {\mathrm{b}}^{-1}$$ μ b - 1 . The results are compared with theoretical models for coherent $$\mathrm{J}/\psi $$ J / ψ and $${\uppsi '}$$ ψ ′ photoproduction. The coherent cross section is found to be in a good agreement with models incorporating moderate nuclear gluon shadowing of about 0.64 at a Bjorken- x of around $$6\times 10^{-4}$$ 6 × 10 - 4 , such as the EPS09 parametrization, however none of the models is able to fully describe the rapidity dependence of the coherent $$\mathrm{J}/\psi $$ J / ψ cross section including ALICE measurements at forward rapidity. The ratio of $${\uppsi '}$$ ψ ′ to $$\mathrm{J}/\psi $$ J / ψ coherent photoproduction cross sections was also measured and found to be consistent with the one for photoproduction off protons.« less
    Free, publicly-accessible full text available August 1, 2022
  6. Free, publicly-accessible full text available August 1, 2022
  7. Abstract The production of $$\phi $$ ϕ mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region $$2.5< y < 4$$ 2.5 < y < 4 . Measurements of the differential cross section $$\mathrm{d}^2\sigma /\mathrm{d}y \mathrm{d}p_{\mathrm {T}}$$ d 2 σ / d y d p T are presented as a function of the transverse momentum ( $$p_{\mathrm {T}}$$ p T ) at the center-of-mass energies $$\sqrt{s}=5.02$$ s = 5.02 , 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at $$\sqrt{s}=5.02$$more »s = 5.02 and 13 TeV are also studied in several rapidity intervals as a function of $$p_{\mathrm {T}}$$ p T , and as a function of rapidity in three $$p_{\mathrm {T}}$$ p T intervals. A hardening of the $$p_{\mathrm {T}}$$ p T -differential cross section with the collision energy is observed, while, for a given energy, $$p_{\mathrm {T}}$$ p T spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing $$p_{\mathrm {T}}$$ p T . The new results, complementing the published measurements at $$\sqrt{s}=2.76$$ s = 2.76 and 7 TeV, allow one to establish the energy dependence of $$\phi $$ ϕ meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with $$p_{\mathrm {T}}$$ p T and rapidity at all the energies.« less
    Free, publicly-accessible full text available August 1, 2022
  8. Free, publicly-accessible full text available August 1, 2022
  9. Abstract The multiplicity dependence of the pseudorapidity density of charged particles in proton–proton (pp) collisions at centre-of-mass energies $$\sqrt{s}~=~5.02$$ s = 5.02 , 7 and 13 TeV measured by ALICE is reported. The analysis relies on track segments measured in the midrapidity range ( $$|\eta | < 1.5$$ | η | < 1.5 ). Results are presented for inelastic events having at least one charged particle produced in the pseudorapidity interval $$|\eta |<1$$ | η | < 1 . The multiplicity dependence of the pseudorapidity density of charged particles is measured with mid- and forward rapidity multiplicity estimators, the lattermore »being less affected by autocorrelations. A detailed comparison with predictions from the PYTHIA 8 and EPOS LHC event generators is also presented. The results can be used to constrain models for particle production as a function of multiplicity in pp collisions.« less