The Western Tropical North Atlantic is a highly dynamic marine system where the Amazon River Plume (ARP) generates a patchwork of environmental conditions that favor different phytoplankton groups. To study phytoplanktonic community structure in such heterogeneous conditions, we used a set of five standard ship-based measurements taken from oceanographic surveys between 2010 and 2021 to characterize different habitat types. We then utilized a variety of multiparametric approaches to examine phytoplankton biodiversity in the different habitats to assess the biological relevance of our delineated habitats. Our approach generated a consistent set of habitat types across cruises carried out in multiple different years and the Amazon’s two predominant (wet and dry) seasons. Our phytoplankton community analyses revealed strong distinctions among all habitats along the plume gradient using
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
in-vivo fluorescence and diagnostic pigments, and clear contrasts of diazotroph community along the mesohaline waters using direct cell-count, a pattern consistent with niche partitioning among similar species. The few apparent mismatches we found between phytoplankton community composition and habitat may reflect recent hydrographic changes driven by mixing and/or upwelling and thus may be a useful index to biologically-relevant temporal variation. Our habitat classification approach is straightforward and broadly applicable in identifying biologically distinct areas within heterogeneous and dynamic regions of the ocean.Free, publicly-accessible full text available January 29, 2025 -
Abstract. Marine diazotrophs convert dinitrogen (N2) gas intobioavailable nitrogen (N), supporting life in the global ocean. In 2012, thefirst version of the global oceanic diazotroph database (version 1) waspublished. Here, we present an updated version of the database (version 2),significantly increasing the number of in situ diazotrophic measurements from13 565 to 55 286. Data points for N2 fixation rates, diazotrophic cellabundance, and nifH gene copy abundance have increased by 184 %, 86 %, and809 %, respectively. Version 2 includes two new data sheets for the nifH genecopy abundance of non-cyanobacterial diazotrophs and cell-specific N2fixation rates. The measurements of N2 fixation rates approximatelyfollow a log-normal distribution in both version 1 and version 2. However,version 2 considerably extends both the left and right tails of thedistribution. Consequently, when estimating global oceanic N2 fixationrates using the geometric means of different ocean basins, version 1 andversion 2 yield similar rates (43–57 versus 45–63 Tg N yr−1; rangesbased on one geometric standard error). In contrast, when using arithmeticmeans, version 2 suggests a significantly higher rate of 223±30 Tg N yr−1 (mean ± standard error; same hereafter) compared to version 1(74±7 Tg N yr−1). Specifically, substantial rate increases areestimated for the South Pacific Ocean (88±23 versus 20±2 Tg N yr−1), primarily driven by measurements in the southwestern subtropics,and for the North Atlantic Ocean (40±9 versus 10±2 Tg N yr−1). Moreover, version 2 estimates the N2 fixation rate in theIndian Ocean to be 35±14 Tg N yr−1, which could not be estimatedusing version 1 due to limited data availability. Furthermore, a comparisonof N2 fixation rates obtained through different measurement methods atthe same months, locations, and depths reveals that the conventional15N2 bubble method yields lower rates in 69 % cases compared tothe new 15N2 dissolution method. This updated version of thedatabase can facilitate future studies in marine ecology andbiogeochemistry. The database is stored at the Figshare repository(https://doi.org/10.6084/m9.figshare.21677687; Shao etal., 2022).