Coral reef metabolism is dominated by benthic photoautotrophic communities that comprise varying combinations of algae, coral, and sand. Rates of daily gross primary production (GPP) for these benthic functional types (BFTs) are remarkably consistent across biogeographical regions, supporting the idea that reefs exhibit modal metabolism. Most variability in reported rates likely arises from differences in light availability. In fact, GPP is a linear function of incident photosynthetically active radiation (PAR), the fraction of PAR absorbed (fAPAR) by photoautotrophic organisms or communities, and light‐use efficiency (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ε ), which parameterizes photosynthesizers' biochemical capacity for CO2fixation: GPP =ε × fAPAR × PAR. On time scales of days to weeks, fAPAR andε are far more stable than PAR.ε is a critical parameter, because it represents productive response integrated across all environmental conditions, other than light. If BFTs exhibit consistent GPP across wide geographic ranges, then theirε s must also be consistent. The aim of this study was to estimateε for algae, coral, and sand. Using data collected during NASA's CORAL mission in 2016–2017,ε was calculated for 32 mixed communities at Lizard Island, Australia (10); Kāne'ohe Bay, Hawai'i (8); Guam (6); and Palau (8). Nonnegative least squares was used to solve forε of each BFT, producing values of 0.038, 0.060, and 0.016 C photon−1for algae, coral, and sand, respectively. These values can be used in light‐driven models of reef metabolism. Further work is necessary to refine these estimates and, importantly, to explore howε is affected by environmental conditions.Free, publicly-accessible full text available March 1, 2025 -
Abstract The implications of ocean acidification are acute for calcifying organisms, notably tropical reef corals, for which accretion generally is depressed and dissolution enhanced at reduced seawater pH. We describe year‐long experiments in which back reef and fore reef (17‐m depth) communities from Moorea, French Polynesia, were incubated outdoors under pCO2regimes reflecting endpoints of representative concentration pathways (RCPs) expected by the end the century. Incubations were completed in three to four flumes (5.0 × 0.3 m, 500 L) in which seawater was refreshed and circulated at 0.1 m s−1, and the response of the communities was evaluated monthly by measurements of net community calcification (NCC) and net community productivity (NCP). For both communities, NCC (but not NCP) was affected by treatments and time, with NCC declining with increasing pCO2, and for the fore reef, becoming negative (i.e., dissolution was occurring) at the highest pCO2(1067–1433
μ atm, RCP8.5). There was scant evidence of community adjustment to reduce the negative effects of ocean acidification, and inhibition of NCC intensified in the back reef as the abundance of massivePorites spp. declined. These results highlight the risks of dissolution under ocean acidification for coral reefs and suggest these effects will be most acute in fore reef habitats. Without signs of amelioration of the negative effects of ocean acidification during year‐long experiments, it is reasonable to expect that the future of coral reefs in acidic seas can be predicted from their current known susceptibility to ocean acidification. -
Abstract Rainfall mobilizes and transports anthropogenic sources of sediments and nutrients from terrestrial to coastal marine ecosystems, and episodic but extreme rainfall may drive high fluxes to marine communities. Between January 13thand January 22nd, 2017, the South Pacific Island of Moorea, French Polynesia experienced an extreme rainfall event. ~57 cm of rain was delivered over a 10-day storm. We quantified pulsed sediments and nutrients transported to nearshore reefs. We determined the spatial and temporal extent of the sediment pulse with estimates of water transparency. We quantified pulsed nutrients at multiple spatial and temporal scales. To determine if terrestrial nutrients were incorporated into the benthic community, we collected macroalgae over 10 days following the storm and measured tissue nutrient concentrations and δN15. Pulsed sediments impacted water clarity for 6 days following the storm, with greatest impacts closest to the river mouth. Nitrite +nitrate concentrations were >100 times the average while phosphate was >25 times average. Macroalgal tissue nutrients were elevated, and δN15implicates sewage as the source, demonstrating transported nutrients were transferred to producer communities. Future climate change predictions suggest extreme rainfall will become more common in this system, necessitating research on these pulses and their ramifications on marine communities.
-
Abstract In this study, fore reef coral communities were exposed to high pCO2 for a year to explore the relationship between net accretion (Gnet) and community structure (planar area growth). Coral reef communities simulating the fore reef at 17-m depth on Mo’orea, French Polynesia, were assembled in three outdoor flumes (each 500 l) that were maintained at ambient (396 µatm), 782 µatm, and 1434 µatm pCO2, supplied with seawater at 300 l h−1, and exposed to light simulating 17-m depth. The communities were constructed using corals from the fore reef, and the responses of massive Porites spp., Acropora spp., and Pocillopora verrucosa were assessed through monthly measurements of Gnet and planar area. High pCO2 depressed Gnet but did not affect colony area by taxon, although the areas of Acropora spp. and P. verrucosa summed to cause multivariate community structure to differ among treatments. These results suggest that skeletal plasticity modulates the effects of reduced Gnet at high pCO2 on planar growth, at least over a year. The low sensitivity of the planar growth of fore reef corals to the effects of ocean acidification (OA) on net calcification supports the counterintuitive conclusion that coral community structure may not be strongly affected by OA.more » « less
-
Abstract Ocean acidification (OA) is predicted to enhance photosynthesis in many marine taxa. However, photophysiology has multiple components that OA may affect differently, especially under different light environments, with potentially contrasting consequences for photosynthetic performance. Furthermore, because photosynthesis affects energetic budgets and internal acid-base dynamics, changes in it due to OA or light could mediate the sensitivity of other biological processes to OA (e.g. respiration and calcification). To better understand these effects, we conducted experiments on
Porolithon onkodes , a common crustose coralline alga in Pacific coral reefs, crossing pCO2and light treatments. Results indicate OA inhibited some aspects of photophysiology (maximum photochemical efficiency), facilitated others (α, the responsiveness of photosynthesis to sub-saturating light), and had no effect on others (maximum gross photosynthesis), with the first two effects depending on treatment light level. Light also exacerbated the increase in dark-adapted respiration under OA, but did not alter the decline in calcification. Light-adapted respiration did not respond to OA, potentially due to indirect effects of photosynthesis. Combined, results indicate OA will interact with light to alter energetic budgets and potentially resource allocation among photosynthetic processes inP. onkodes , likely shifting its light tolerance, and constraining it to a narrower range of light environments. -
Abstract The Anthropocene climate has largely been defined by a rapid increase in atmospheric CO2,causing global climate change (warming) and ocean acidification (OA, a reduction in oceanic pH). OA is of particular concern for coral reefs, as the associated reduction in carbonate ion availability impairs biogenic calcification and promotes dissolution of carbonate substrata. While these trends ultimately affect ecosystem calcification, scaling experimental analyses of the response of organisms to OA to consider the response of ecosystems to OA has proved difficult. The benchmark of ecosystem-level experiments to study the effects of OA is provided through Free Ocean CO2Enrichment (FOCE), which we use in the present analyses for a 21-d experiment on the back reef of Mo’orea, French Polynesia. Two natural coral reef communities were incubated
in situ , with one exposed to ambient pCO2(393 µatm), and one to high pCO2(949 µatm). Our results show a decrease in 24-h net community calcification (NCC) under high pCO2, and a reduction in nighttime NCC that attenuated and eventually reversed over 21-d. This effect was not observed in daytime NCC, and it occurred without any effect of high pCO2on net community production (NCP). These results contribute to previous studies on ecosystem-level responses of coral reefs to the OA conditions projected for the end of the century, and they highlight potential attenuation of high pCO2effects on nighttime net community calcification.