Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a study of the weak lensing inferred matter profiles ΔΣ(R) of 698 South Pole Telescope (SPT) thermal Sunyaev-Zel’dovich effect (tSZE) selected and MCMF optically confirmed galaxy clusters in the redshift range 0.25 < z < 0.94 that have associated weak gravitational lensing shear profiles from the Dark Energy Survey (DES). Rescaling these profiles to account for the mass dependent size and the redshift dependent density produces average rescaled matter profiles ΔΣ(R/R200c)/(ρcritR200c) with a lower dispersion than the unscaled ΔΣ(R) versions, indicating a significant degree of self-similarity. Galaxy clusters from hydrodynamical simulations also exhibit matter profiles that suggest a high degree of self-similarity, with RMS variation among the average rescaled matter profiles with redshift and mass falling by a factor of approximately six and 23, respectively, compared to the unscaled average matter profiles. We employed this regularity in a new Bayesian method for weak lensing mass calibration that employs the so-called cluster mass posteriorP(M200|ζ̂, λ̂,z), which describes the individual cluster masses given their tSZE (ζ̂) and optical (λ̂,z) observables. This method enables simultaneous constraints on richnessλ-mass and tSZE detection significanceζ-mass relations using average rescaled cluster matter profiles. We validated the method using realistic mock datasets and present observable-mass relation constraints for the SPT×DES sample, where we constrained the amplitude, mass trend, redshift trend, and intrinsic scatter. Our observable-mass relation results are in agreement with the mass calibration derived from the recent cosmological analysis of the SPT×DES data based on a cluster-by-cluster lensing calibration. Our new mass calibration technique offers a higher efficiency when compared to the single cluster calibration technique. We present new validation tests of the observable-mass relation that indicate the underlying power-law form and scatter are adequate to describe the real cluster sample but that also suggest a redshift variation in the intrinsic scatter of theλ-mass relation may offer a better description. In addition, the average rescaled matter profiles offer high signal-to-noise ratio (S/N) constraints on the shape of real cluster matter profiles, which are in good agreement with available hydrodynamical ΛCDM simulations. This high S/N profile contains information about baryon feedback, the collisional nature of dark matter, and potential deviations from general relativity.more » « lessFree, publicly-accessible full text available March 1, 2026
-
We use galaxy cluster abundance measurements from the South Pole Telescope enhanced by multicomponent matched filter confirmation and complemented with mass information obtained using weak-lensing data from Dark Energy Survey Year 3 (DES Y3) and targeted Hubble Space Telescope observations for probing deviations from the cold dark matter paradigm. Concretely, we consider a class of dark sector models featuring interactions between dark matter (DM) and a dark radiation (DR) component within the framework of the effective theory of structure formation (ETHOS). We focus on scenarios that lead to power suppression over a wide range of scales, and thus can be tested with data sensitive to large scales, as realized, for example, for DM–DR interactions following from an unbroken non-Abelian gauge theory (interaction rate with power-law index within the ETHOS parametrization). Cluster abundance measurements are mostly sensitive to the amount of DR interacting with DM, parametrized by the ratio of DR temperature to the cosmic microwave background (CMB) temperature, . We find an upper limit at 95% credibility. When the cluster data are combined with Planck 2018 CMB data along with baryon acoustic oscillation (BAO) measurements we find , corresponding to a limit on the abundance of interacting DR that is around 3 times tighter than that from CMB + BAO data alone. We also discuss the complementarity of weak lensing informed cluster abundance studies with probes sensitive to smaller scales, explore the impact on our analysis of massive neutrinos, and comment on a slight preference for the presence of a nonzero interacting DR abundance, which enables a physical solution to the tension. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available April 1, 2026
-
We present constraints on the gravity model using a sample of 1005 galaxy clusters in the redshift range 0.25–1.78 that have been selected through the thermal Sunyaev-Zel’dovich effect from South Pole Telescope data and subjected to optical and near-infrared confirmation with the multicomponent matched filter algorithm. We employ weak gravitational lensing mass calibration from the Dark Energy Survey Year 3 data for 688 clusters at and from the Hubble Space Telescope for 39 clusters with . Our cluster sample is a powerful probe of gravity, because this model predicts a scale-dependent enhancement in the growth of structure, which impacts the halo mass function (HMF) at cluster mass scales. To account for these modified gravity effects on the HMF, our analysis employs a semianalytical approach calibrated with numerical simulations. Combining calibrated cluster counts with primary cosmic microwave background temperature and polarization anisotropy measurements from the Planck 2018 release, we derive robust constraints on the parameter . Our results, at the 95% credible level, are the tightest current constraints on gravity from cosmological scales. This upper limit rules out -like deviations from general relativity that result in more than a enhancement of the cluster population on mass scales . Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
-
Context.The determination of accurate photometric redshifts (photo-zs) in large imaging galaxy surveys is key for cosmological studies. One of the most common approaches is machine learning techniques. These methods require a spectroscopic or reference sample to train the algorithms. Attention has to be paid to the quality and properties of these samples since they are key factors in the estimation of reliable photo-zs. Aims.The goal of this work is to calculate the photo-zsfor the Year 3 (Y3) Dark Energy Survey (DES) Deep Fields catalogue using the Directional Neighborhood Fitting (DNF) machine learning algorithm. Moreover, we want to develop techniques to assess the incompleteness of the training sample and metrics to study how incompleteness affects the quality of photometric redshifts. Finally, we are interested in comparing the performance obtained by DNF on the Y3 DES Deep Fields catalogue with that of the EAzY template fitting approach. Methods.We emulated – at a brighter magnitude – the training incompleteness with a spectroscopic sample whose redshifts are known to have a measurable view of the problem. We used a principal component analysis to graphically assess the incompleteness and relate it with the performance parameters provided by DNF. Finally, we applied the results on the incompleteness to the photo-zcomputation on the Y3 DES Deep Fields with DNF and estimated its performance. Results.The photo-zsof the galaxies in the DES deep fields were computed with the DNF algorithm and added to the Y3 DES Deep Fields catalogue. We have developed some techniques to evaluate the performance in the absence of “true” redshift and to assess the completeness. We have studied the tradeoff in the training sample between the highest spectroscopic redshift quality versus completeness. We found some advantages in relaxing the highest-quality spectroscopic redshift requirements at fainter magnitudes in favour of completeness. The results achieved by DNF on the Y3 Deep Fields are competitive with the ones provided by EAzY, showing notable stability at high redshifts. It should be noted that the good results obtained by DNF in the estimation of photo-zsin deep field catalogues make DNF suitable for the future Legacy Survey of Space and Time (LSST) andEucliddata, which will have similar depths to the Y3 DES Deep Fields.more » « less
-
Abstract We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 <z< 1.13, which is the largest sample of supernovae from any single survey and increases the number of knownz> 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters are 0.017 in a flat ΛCDM model, and = (0.082, 0.152) in a flatwCDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time.more » « less
-
Abstract We presentgrizphotometric light curves for the full 5 yr of the Dark Energy Survey Supernova (DES-SN) program, obtained with both forced point-spread function photometry on difference images (DiffImg) performed during survey operations, and scene modelling photometry (SMP) on search images processed after the survey. This release contains 31,636DiffImgand 19,706 high-quality SMP light curves, the latter of which contain 1635 photometrically classified SNe that pass cosmology quality cuts. This sample spans the largest redshift (z) range ever covered by a single SN survey (0.1 <z< 1.13) and is the largest single sample from a single instrument of SNe ever used for cosmological constraints. We describe in detail the improvements made to obtain the final DES-SN photometry and provide a comparison to what was used in the 3 yr DES-SN spectroscopically confirmed Type Ia SN sample. We also include a comparative analysis of the performance of the SMP photometry with respect to the real-timeDiffImgforced photometry and find that SMP photometry is more precise, more accurate, and less sensitive to the host-galaxy surface brightness anomaly. The public release of the light curves and ancillary data can be found atgithub.com/des-science/DES-SN5YRand doi:10.5281/zenodo.12720777.more » « less
-
ABSTRACT Extracting precise cosmology from weak lensing surveys requires modelling the non-linear matter power spectrum, which is suppressed at small scales due to baryonic feedback processes. However, hydrodynamical galaxy formation simulations make widely varying predictions for the amplitude and extent of this effect. We use measurements of Dark Energy Survey Year 3 weak lensing (WL) and Atacama Cosmology Telescope DR5 kinematic Sunyaev–Zel’dovich (kSZ) to jointly constrain cosmological and astrophysical baryonic feedback parameters using a flexible analytical model, ‘baryonification’. First, using WL only, we compare the $$S_8$$ constraints using baryonification to a simulation-calibrated halo model, a simulation-based emulator model, and the approach of discarding WL measurements on small angular scales. We find that model flexibility can shift the value of $$S_8$$ and degrade the uncertainty. The kSZ provides additional constraints on the astrophysical parameters, with the joint WL + kSZ analysis constraining $$S_8=0.823^{+0.019}_{-0.020}$$. We measure the suppression of the non-linear matter power spectrum using WL + kSZ and constrain a mean feedback scenario that is more extreme than the predictions from most hydrodynamical simulations. We constrain the baryon fractions and the gas mass fractions and find them to be generally lower than inferred from X-ray observations and simulation predictions. We conclude that the WL + kSZ measurements provide a new and complementary benchmark for building a coherent picture of the impact of gas around galaxies across observations.more » « less
-
We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete to M V ∼ (‑7, ‑10) mag for galaxies at D = (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of $${2.2}_{-0.12}^{+0.05}\,\mathrm{Mpc}$$ , a potential satellite of the Local Volume galaxy NGC 55, separated by 47' (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absolute V-band magnitude of $$-{8.0}_{-0.3}^{+0.5}\,\mathrm{mag}$$ and an azimuthally averaged physical half-light radius of $${2.2}_{-0.4}^{+0.5}\,\mathrm{kpc}$$ , making this one of the lowest surface brightness galaxies ever found with $$\mu =32.3\,\mathrm{mag}\,{\mathrm{arcsec}}^{-2}$$. This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host.more » « less
-
Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements ( ) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining cold dark matter ( ) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure and . Compared to constraints from primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ( ) for the two-parameter difference. We further obtain which is lower than the measurement at the level. The combined SPT cluster, DES , and datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit on the sum of neutrino masses. Assuming a model, we constrain the dark energy equation of state parameter and when combining with primary CMB anisotropies, we recover , a difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology and our analysis paves the way for upcoming joint analyses of next-generation datasets. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026