skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carrillo‐Cardenas, Gerardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract New particle formation (NPF) is a complex atmospheric phenomenon defined by the gas‐to‐particle conversion that leads to the sudden burst and growth in aerosol particles. Although chemical mechanisms for aerosol nucleation and growth are well established, the role of physical processes, such as turbulent mixing, within the atmospheric boundary layer (ABL) is beginning to emerge with recent studies. This study, based on the observations from the 2022 CFACT (Cold Fog Amongst Complex Terrain) field study in the Heber Valley of northern Utah, demonstrates an interconnection between turbulence and the occurrence of NPF. Using a spatially distributed boundary layer instrumentation, a novel feature of CFACT, three case studies depict unique boundary layer conditions that modulate the development of NPF characterized by sustained turbulence and weak intermittent turbulence. Quantitative analysis using in situ measurements and derived variables demonstrate that periods of weak intermittent turbulence hinder particle growth, whereas sustained turbulence helps modulate NPF. These findings provide new insights into the physical drivers of NPF, underscoring the role of turbulence in impacting particle formation with the ABL. 
    more » « less
  2. Abstract. New particle formation (NPF) events are defined as asudden burst of aerosols followed by growth and can impact climate bygrowing to larger sizes and under proper conditions, potentially formingcloud condensation nuclei (CCN). Field measurements relating NPF and CCN arecrucial in expanding regional understanding of how aerosols impactclimate. To quantify the possible impact of NPF on CCN formation, it isimportant to not only maintain consistency when classifying NPF events butalso consider the proper timeframe for particle growth to CCN-relevantsizes. Here, we analyze 15 years of direct measurements of both aerosol sizedistributions and CCN concentrations and combine them with novel methods toquantify the impact of NPF on CCN formation at Storm Peak Laboratory (SPL),a remote, mountaintop observatory in Colorado. Using the new automaticmethod to classify NPF, we find that NPF occurs on 50 % of all daysconsidered in the study from 2006 to 2021, demonstrating consistency withprevious work at SPL. NPF significantly enhances CCN during the winter by afactor of 1.36 and during the spring by a factor of 1.54, which, when combined withprevious work at SPL, suggests the enhancement of CCN by NPF occurs on aregional scale. We confirm that events with persistent growth are common inthe spring and winter, while burst events are more common in the summer andfall. A visual validation of the automatic method was performed in thestudy. For the first time, results clearly demonstrate the significantimpact of NPF on CCN in montane North American regions and the potential forwidespread impact of NPF on CCN. 
    more » « less